1887

Abstract

A novel aerobic, heterotrophic bacterium, designated BiosLi39, was isolated from the South East Pacific Ocean. Cells were Gram-negative gliding rods forming yellow colonies on marine agar. The isolate was oxidase-, catalase- and alkaline phosphatase-positive and -galactosidase-negative. Strain BiosLi39 grew at 20-37 °C (optimum 30 °C), at pH 7.0–9.0 (optimum pH 8.0) and with 20–60 g NaCl l (optimum 30–50 g NaCl l). The fatty acids (>1 %) comprised iso-C, iso-C G, iso-C, anteiso-C, C G, C, iso-C 2-OH, iso-C G, iso-C, iso-C 3-OH, iso-C 2-OH, iso-C 3-OH, C 2-OH and three unidentified components with equivalent chain lengths of 17.87, 18.10 and 18.71. A significant proportion of the hydroxylated fatty acids are amide-linked. The lipid pattern indicated the presence of phosphatidylethanolamine, two unidentified aminolipids and three unidentified polar lipids. The strain contained menaquinone 7 as the sole respiratory lipoquinone and did not produce flexirubin-type pigments. The G+C content of the genomic DNA was 37.2 mol%. Comparative 16S rRNA gene sequence analysis indicated that strain BiosLi39 was distantly related to all of the representatives of the phylum . Its closest relative was IFO 15994, with which it shared 92.5 % 16S rRNA gene sequence similarity. On the basis of genotypic, phenotypic and chemotaxonomic characteristics, we propose a novel genus and species, gen. nov., sp. nov., with type strain BiosLi39 (=DSM 19307 =CIP 109600 =OOB 398).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.018804-0
2010-12-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/12/2972.html?itemId=/content/journal/ijsem/10.1099/ijs.0.018804-0&mimeType=html&fmt=ahah

References

  1. Agogué, H., Casamayor, E. O., Bourrain, M., Obernosterer, I., Joux, F., Herndl, G. J. & Lebaron, P. ( 2005; ). A survey on bacteria inhabiting the sea surface microlayer of coastal ecosystems. FEMS Microbiol Ecol 54, 269–280.[CrossRef]
    [Google Scholar]
  2. Alain, K., Querellou, J., Lesongeur, F., Pignet, P., Crassous, P., Raguénès, G., Cueff, V. & Cambon-Bonavita, M.-A. ( 2002; ). Caminibacter hydrogeniphilus gen. nov., sp. nov., a novel thermophilic, hydrogen-oxidizing bacterium isolated from an East Pacific Rise hydrothermal vent. Int J Syst Evol Microbiol 52, 1317–1323.[CrossRef]
    [Google Scholar]
  3. Alain, K., Intertaglia, L., Catala, P. & Lebaron, P. ( 2008; ). Eudoraea adriatica gen. nov. sp. nov., a novel marine bacterium of the family Flavobacteriaceae. Int J Syst Evol Microbiol 58, 2275–2281.[CrossRef]
    [Google Scholar]
  4. Altschul, S. F., Gish, W., Miller, W., Myers, E. & Lipman, D. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  5. Bernardet, J.-F., Segers, P., Vancanneyt, M., Berthe, F., Kersters, K. & Vandamme, P. ( 1996; ). Cutting a Gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol 46, 128–148.[CrossRef]
    [Google Scholar]
  6. Bernardet, J.-F., Nakagawa, Y. & Holmes, B.for the Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes ( 2002; ). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52, 1049–1070.[CrossRef]
    [Google Scholar]
  7. Brian, B. L. & Gardner, E. W. ( 1968; ). A simple procedure for detecting the presence of cyclopropane fatty acids in bacterial lipids. Appl Microbiol 16, 549–552.
    [Google Scholar]
  8. Dees, S. B., Carlone, G. M., Hollis, D. & Moss, C. W. ( 1985; ). Chemical and phenotypic characteristics of Flavobacterium thalpophilum compared with those of other Flavobacterium and Sphingobacterium species. Int J Syst Bacteriol 35, 16–22.[CrossRef]
    [Google Scholar]
  9. Felsenstein, J. ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef]
    [Google Scholar]
  10. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  11. Galtier, N., Gouy, M. & Gautier, C. ( 1996; ). seaview and phylo_win: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12, 543–548.
    [Google Scholar]
  12. Gherna, R. & Woese, C. R. ( 1992; ). A partial phylogenetic analysis of the ‘Flavobacter-Bacteroides’ phylum: basis for taxonomic restructuring. Syst Appl Microbiol 15, 513–521.[CrossRef]
    [Google Scholar]
  13. Godchaux, W., III & Leadbetter, E. R. ( 1984; ). Sulfonolipids of gliding bacteria. Structure of the N-acylaminosulfonates. J Biol Chem 259, 2982–2990.
    [Google Scholar]
  14. Johansen, J. E., Nielsen, P. & Sjøholm, C. ( 1999; ). Description of Cellulophaga baltica gen. nov., sp. nov. and Cellulophaga fucicola gen. nov., sp. nov. and reclassification of [Cytophaga] lytica to Cellulophaga lytica gen. nov., comb. nov. Int J Syst Bacteriol 49, 1231–1240.[CrossRef]
    [Google Scholar]
  15. Kämpfer, P. & Kroppenstedt, R. M. ( 1996; ). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42, 989–1005.[CrossRef]
    [Google Scholar]
  16. Kawazoe, R., Okuyama, H., Reichardt, W. & Sasaki, S. ( 1991; ). Phospholipids and a novel glycine-containing lipoamino acid in Cytophaga johnsonae Stanier strain C21. J Bacteriol 173, 5470–5475.
    [Google Scholar]
  17. Kirchman, D. L. ( 2002; ). The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol Ecol 39, 91–100.
    [Google Scholar]
  18. Labrenz, M., Collins, M. D., Lawson, P. A., Tindall, B. J., Braker, G. & Hirsch, P. ( 1998; ). Antarctobacter heliothermus gen. nov., sp. nov., a budding bacterium from hypersaline and heliothermal Ekho Lake. Int J Syst Bacteriol 48, 1363–1372.[CrossRef]
    [Google Scholar]
  19. Lau, S. C. K., Tsoi, M. M. Y., Li, X., Plakhotnikova, I., Dobretsov, S., Wu, M., Wong, P.-K., Pawlik, J. R. & Qian, P.-Y. ( 2006; ). Description of Fabibacter halotolerans gen. nov., sp. nov. and Roseivirga spongicola sp. nov., and reclassification of [Marinicola] seohaensis as Roseivirga seohaensis comb. nov. Int J Syst Evol Microbiol 56, 1059–1065.[CrossRef]
    [Google Scholar]
  20. Lewin, R. A. ( 1969; ). A classification of flexibacteria. J Gen Microbiol 58, 189–206.[CrossRef]
    [Google Scholar]
  21. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  22. MIDI Inc. ( 2001; ). Sherlock Microbial Identification System. Newark, DE. : MIDI Inc.
    [Google Scholar]
  23. Nakagawa, Y. & Yamasato, K. ( 1993; ). Phylogenetic diversity of the genus Cytophaga revealed by 16S rRNA sequencing and menaquinone analysis. J Gen Microbiol 139, 1155–1161.[CrossRef]
    [Google Scholar]
  24. Nakagawa, Y. & Yamasato, K. ( 1996; ). Emendation of the genus Cytophaga and transfer of Cytophaga agarovorans and Cytophaga salmonicolor to Marinilabilia gen. nov.: phylogenetic analysis of the Flavobacterium-Cytophaga complex. Int J Syst Bacteriol 46, 599–603.[CrossRef]
    [Google Scholar]
  25. Nakagawa, Y., Sakane, T., Suzuki, M. & Hatano, K. ( 2002; ). Phylogenetic structure of the genera Flexibacter, Flexithrix, and Microscilla deduced from 16S rRNA sequence analysis. J Gen Appl Microbiol 48, 155–165.[CrossRef]
    [Google Scholar]
  26. Nedashkovskaya, O. I., Suzuki, M., Vysotskii, M. V. & Mikhailov, V. V. ( 2003; ). Reichenbachia agariperforans gen. nov., sp. nov., a novel marine bacterium in the phylum Cytophaga-Flavobacterium-Bacteroides. Int J Syst Evol Microbiol 53, 81–85.[CrossRef]
    [Google Scholar]
  27. Nedashkovskaya, O. I., Kim, S. B., Lee, D. H., Lysenko, A. M., Shevchenko, L. S., Frolova, G. M., Mikhailov, V. V., Lee, K. H. & Bae, K. S. ( 2005; ). Roseivirga ehrenbergii gen. nov., sp. nov., a novel marine bacterium of the phylum ‘Bacteroidetes’, isolated from the green alga Ulva fenestrata. Int J Syst Evol Microbiol 55, 231–234.[CrossRef]
    [Google Scholar]
  28. Nedashkovskaya, O. I., Kim, S. B., Shin, D. S., Beleneva, I. A. & Mikhailov, V. V. ( 2007; ). Fulvivirga kasyanovii gen. nov., sp. nov., a novel member of the phylum Bacteroidetes isolated from seawater in a mussel farm. Int J Syst Evol Microbiol 57, 1046–1049.[CrossRef]
    [Google Scholar]
  29. Olsen, G. J., Woese, C. R. & Overbeek, R. ( 1994; ). The winds of (evolutionary) change: breathing new life into microbiology. J Bacteriol 176, 1–6.
    [Google Scholar]
  30. Paster, B. J., Ludwig, W., Weisburg, W. G., Stackebrandt, E., Hespell, R. B., Hahn, C. M., Reichenbach, H., Stetter, K. O. & Woese, C. R. ( 1985; ). A phylogenetic grouping of the bacteroides, cytophagas, and certain flavobacteria. Syst Appl Microbiol 6, 34–42.[CrossRef]
    [Google Scholar]
  31. Raguénès, G., Christen, R., Guézennec, J., Pignet, P. & Barbier, G. ( 1997; ). Vibrio diabolicus sp. nov., a new polysaccharide-secreting organism isolated from a deep-sea hydrothermal vent polychaete annelid, Alvinella pompejana. Int J Syst Bacteriol 47, 989–995.[CrossRef]
    [Google Scholar]
  32. Reichenbach, H. ( 1989; ). The order Cytophagales Leadbetter 1974, 99AL. In Bergey's Manual of Systematic Bacteriology, vol. 3, pp. 2011–2073. Edited by Staley, J. T., Bryant, M. P., Pfennig, N. & Holt, J. C.. Baltimore. : Williams & Wilkins.
    [Google Scholar]
  33. Saitou, N. & Nei, M. ( 1987; ). The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  34. Sakamoto, M., Suzuki, M., Umeda, M., Ishikawa, I. & Benno, Y. ( 2002; ). Reclassification of Bacteroides forsythus (Tanner et al. 1986) as Tannerella forsythensis corrig., gen. nov., comb. nov. Int J Syst Evol Microbiol 52, 841–849.[CrossRef]
    [Google Scholar]
  35. Seo, H.-S., Kwon, K. K., Yang, S.-H., Lee, H.-S., Bae, S. S., Lee, J.-H. & Kim, S.-J. ( 2009; ). Marinoscillum gen. nov., a member of the family ‘Flexibacteraceae’, with Marinoscillum pacificum sp. nov. from a marine sponge and Marinoscillum furvescens nom. rev., comb. nov. Int J Syst Evol Microbiol 59, 1204–1208.[CrossRef]
    [Google Scholar]
  36. Smibert, R. M. & Krieg, N. R. ( 1994; ). Phenotypic characterization. In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt, P., Murray, R. G. E., Wood, W. A. & Krieg, N. R.. Washington, DC. : American Society for Microbiology.
    [Google Scholar]
  37. Suzuki, M., Nakagawa, Y., Harayama, S. & Yamamoto, S. ( 2001; ). Phylogenetic analysis and taxonomic study of marine Cytophaga-like bacteria: proposal of Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov. Int J Syst Evol Microbiol 51, 1639–1652.[CrossRef]
    [Google Scholar]
  38. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  39. Tindall, B. J. ( 1990a; ). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13, 128–130.[CrossRef]
    [Google Scholar]
  40. Tindall, B. J. ( 1990b; ). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66, 199–202.[CrossRef]
    [Google Scholar]
  41. Vandamme, P., Bernardet, J.-F., Segers, P., Kersters, K. & Holmes, B. ( 1994; ). New perspectives in the classification of the flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 44, 827–831.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.018804-0
Loading
/content/journal/ijsem/10.1099/ijs.0.018804-0
Loading

Data & Media loading...

Supplements

vol. , part 12, pp. 2972 - 2978

Effect of temperature on the maximum growth rate of strain BiosLi39 in MB.



IMAGE

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error