1887

Abstract

Two isolates from rhizosphere soil of cotton, designated Gh-67 and Gh-48, which produced large amounts of extracellular polysaccharide and possessed plant-growth-promoting traits, were characterized phenotypically and genotypically. The strains were Gram-negative and cells were non-motile rods that grew optimally at 28 °C and grew between pH 4 and 7. 16S rRNA gene sequence analysis of strains Gh-67 and Gh-48 placed them in the genus , with pairwise sequence similarity between them and type strains from related genera ranging from 93.9 to 98.2 %. The major fatty acids were iso-C, C and summed feature 3 (C 7c and/or iso-C 2-OH). The strains contained MK-7 as the major isoprenoid quinone. The DNA G+C contents of strains Gh-67 and Gh-48 were 46.7 and 44.2 mol%, respectively. The low DNA–DNA hybridization value (18 %) and a number of phenotypic differences between strains Gh-48 and Gh-67 indicated that they represent two separate species. Results of phenotypic, phylogenetic and genotypic analysis revealed that the strains were separated from the species of described to date. Therefore, strains Gh-67 and Gh-48 represent novel species of , for which we propose the names sp. nov. (type strain Gh-67 =NCIMB 14470 =KCTC 22380) and sp. nov. (type strain Gh-48 =NCIMB 14471 =KCTC 22379).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.018713-0
2010-10-01
2019-12-09
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/10/2451.html?itemId=/content/journal/ijsem/10.1099/ijs.0.018713-0&mimeType=html&fmt=ahah

References

  1. An, D.-S., Yin, C.-R., Lee, S.-T. & Cho, C.-H. ( 2009; ). Mucilaginibacter daejeonensis sp. nov., isolated from dried rice straw. Int J Syst Evol Microbiol 59, 1122–1125.[CrossRef]
    [Google Scholar]
  2. Atlas, R. M. ( 1993; ). Handbook of Microbiological Media, pp. 196-–843. Edited by Parks, L. C.. Boca Raton, FL. : CRC Press.
    [Google Scholar]
  3. Baik, K. S., Park, S. C., Kim, E. M., Lim, C. H. & Seong, C. N. ( 2010; ). Mucilaginibacter rigui sp. nov., isolated from wetland freshwater, and emended description of the genus Mucilaginibacter. Int J Syst Evol Microbiol 60, 134-–139.[CrossRef]
    [Google Scholar]
  4. Blaha, D., Prigent-Combaret, C., Sajjad Mirza, M. & Moënne-Loccoz, Y. ( 2006; ). Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase-encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiol Ecol 56, 455–470.[CrossRef]
    [Google Scholar]
  5. Bozzola, J. J. & Russell, L. D. ( 1998; ). Electron Microscopy, 2nd edn. Sudbury, MA. : Jones & Bartlett.
    [Google Scholar]
  6. Chanprame, S., Todd, J. J. & Widholm, J. M. ( 1996; ). Prevention of pink-pigmented methylotrophic bacteria (Methylobacterium mesophilicum) contamination of plant tissue cultures. Plant Cell Rep 16, 222–225.[CrossRef]
    [Google Scholar]
  7. Egamberdieva, D., Kamilova, F., Validov, S., Gafurova, L., Kucharova, Z. & Lugtenberg, B. ( 2008; ). High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ Microbiol 10, 1–9.
    [Google Scholar]
  8. Fautz, E. & Reichenbach, H. ( 1980; ). A simple test for flexirubin-type pigments. FEMS Microbiol Lett 8, 87–91.[CrossRef]
    [Google Scholar]
  9. Floyd, M. M., Tang, J., Kane, M. & Emerson, D. ( 2005; ). Captured diversity in a culture collection: case study of the geographic and habitat distribution of environmental isolates held at the American Type Culture Collection. Appl Environ Microbiol 71, 2813–2823.[CrossRef]
    [Google Scholar]
  10. Gerhardt, P. R., Murray, R. G. E., Wood, W. A. & Krieg, N. R. (editors) ( 1994; ). Methods for General and Molecular Bacteriology. Washington, DC. : American Society for Microbiology.
    [Google Scholar]
  11. Ghosh, S., Penterman, J. N., Little, R. D., Chavez, R. & Glick, B. R. ( 2003; ). Three newly isolated plant growth-promoting bacilli facilitate the seedling growth of canola, Brassica campestris. Plant Physiol Biochem 41, 277–281.[CrossRef]
    [Google Scholar]
  12. Glick, B. R., Jacobson, C. B., Schwarze, M. M. K. & Pasternak, J. J. ( 1994; ). 1-Aminocyclopropane-1-carboxylic acid deaminase mutants of the plant growth promoting rhizobacterium Pseudomonas putida GR12-2 do not stimulate canola root elongation. Can J Microbiol 40, 911–915.[CrossRef]
    [Google Scholar]
  13. Glick, B. R., Patten, C. L., Holguin, G. & Penrose, D. M. ( 1999; ). Biochemical and Genetic Mechanisms Used by Plant Growth Promoting Bacteria. London. : Imperial College Press.
    [Google Scholar]
  14. Green, P. N. & Bousfield, I. J. ( 1982; ). A taxonomic study of some Gram-negative facultatively methylotrophic bacteria. J Gen Microbiol 128, 623–638.
    [Google Scholar]
  15. Jeon, Y., Lee, S.-S., Chung, B.-S., Kim, J.-M., Bae, J.-W., Park, S.-K. & Jeon, C. O. ( 2009; ). Mucilaginibacter oryzae sp. nov., isolated from soil of a rice paddy. Int J Syst Evol Microbiol 59, 1451–1454.[CrossRef]
    [Google Scholar]
  16. Kouker, G. & Jaeger, K.-E. ( 1987; ). Specific and sensitive plate assay for bacterial lipase. Appl Environ Microbiol 53, 211–213.
    [Google Scholar]
  17. Kroppenstedt, R. M. ( 1982; ). Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationery phases. J Liq Chromatogr 5, 2359–2367.[CrossRef]
    [Google Scholar]
  18. Li, J., Ovakim, D. H., Charles, T. C. & Glick, B. R. ( 2000; ). An ACC deaminase minus mutant of Enterobacter cloacae UW4 no longer promotes root elongation. Curr Microbiol 41, 101–105.[CrossRef]
    [Google Scholar]
  19. Luo, X., Zhang, L., Dai, J., Liu, M., Zhang, K., An, H. & Fang, C. ( 2009; ). Mucilaginibacter ximonensis sp. nov., isolated from Tibetan soil. Int J Syst Evol Microbiol 59, 1447–1450.[CrossRef]
    [Google Scholar]
  20. Madhaiyan, M., Poonguzhali, S., Ryu, J.-H. & Sa, T.-M. ( 2006; ). Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminase-containing Methylobacterium fujisawaense. Planta 224, 268–278.[CrossRef]
    [Google Scholar]
  21. Madhaiyan, M., Kim, B.-Y., Poonguzhali, S., Kwon, S.-W., Song, M.-H., Ryu, J.-H., Go, S.-J., Koo, B.-S. & Sa, T.-M. ( 2007a; ). Methylobacterium oryzae sp. nov., an aerobic, pink-pigmented, facultatively methylotrophic, 1-aminocyclopropane-1-carboxylate deaminase-producing bacterium isolated from rice. Int J Syst Evol Microbiol 57, 326–331.[CrossRef]
    [Google Scholar]
  22. Madhaiyan, M., Poonguzhali, S. & Sa, T.-M. ( 2007b; ). Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere 69, 220–228.[CrossRef]
    [Google Scholar]
  23. Madhaiyan, M., Poonguzhali, S., Kwon, S.-W. & Sa, T.-M. ( 2009; ). Methylobacterium phyllosphaerae sp. nov., a pink-pigmented, facultative methylotroph from rice. Int J Syst Evol Microbiol 59, 22–27.[CrossRef]
    [Google Scholar]
  24. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  25. Pankratov, T. A., Tindall, B. J., Liesack, W. & Dedysh, S. N. ( 2007; ). Mucilaginibacter paludis gen. nov., sp. nov. and Mucilaginibacter gracilis sp. nov., pectin-, xylan- and laminarin-degrading members of the family Sphingobacteriaceae from acidic Sphagnum peat bog. Int J Syst Evol Microbiol 57, 2349–2354.[CrossRef]
    [Google Scholar]
  26. Penrose, D. M. & Glick, B. R. ( 2003; ). Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118, 10–15.[CrossRef]
    [Google Scholar]
  27. Poonguzhali, S., Madhaiyan, M. & Sa, T. ( 2006; ). Cultivation-dependent characterization of rhizobacterial communities from field grown Chinese cabbage Brassica campestris ssp pekinensis and screening of traits for potential plant growth promotion. Plant Soil 286, 167–180.[CrossRef]
    [Google Scholar]
  28. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  29. Sasser, M. ( 1990; ). Identification of bacteria through fatty acid analysis. In Methods in Phytobacteriology, pp. 199–204. Edited by Klement, Z., Rudolph, K. & Sands, D. C.. Budapest. : Akademiai Kiado.
    [Google Scholar]
  30. Seldin, L. & Dubnau, D. ( 1985; ). Deoxyribonucleic acid homology among Bacillus polymyxa, Bacillus macerans, Bacillus azotofixans, and other nitrogen-fixing Bacillus strains. Int J Syst Bacteriol 35, 151–154.[CrossRef]
    [Google Scholar]
  31. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  32. Steyn, P. L., Segers, P., Vancanneyt, M., Sandra, P., Kersters, K. & Joubert, J. J. ( 1998; ). Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. Proposal of the family Sphingobacteriaceae. Int J Syst Bacteriol 48, 165–177.[CrossRef]
    [Google Scholar]
  33. Tamura, K., Dudley, J., Nei, M. & Kumar, S. ( 2007; ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef]
    [Google Scholar]
  34. Ten, L. N., Im, W.-T., Kim, M.-K., Kang, M.-S. & Lee, S.-T. ( 2004; ). Development of a plate technique for screening of polysaccharide degrading microorganisms by using a mixture of insoluble chromogenic substrates. J Microbiol Methods 56, 375–382.[CrossRef]
    [Google Scholar]
  35. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  36. Urai, M., Aizawa, T., Nakagawa, Y., Nakajima, M. & Sunairi, M. ( 2008; ). Mucilaginibacter kameinonensis sp. nov., isolated from garden soil. Int J Syst Evol Microbiol 58, 2046–2050.[CrossRef]
    [Google Scholar]
  37. Vessey, J. K. ( 2003; ). Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255, 571–586.[CrossRef]
    [Google Scholar]
  38. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  39. Whipps, J. M. ( 2001; ). Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52, 487–511.[CrossRef]
    [Google Scholar]
  40. Whittenbury, R., Davies, S. L. & Wilkinson, J. F. ( 1970; ). Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61, 205–218.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.018713-0
Loading
/content/journal/ijsem/10.1099/ijs.0.018713-0
Loading

Data & Media loading...

Supplements

vol. , part 10, pp. 2451 - 2457

Scanning electron micrographs of cells of strain Gh-67 (a, b) and Gh-48 (c, d) on AMS medium supplemented with 0.5 % (v/v) methanol. Bars, 2 µm (a) and 1 µm (b, c and d).



IMAGE

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error