1887

Abstract

Two extremely halophilic archaea, strains RO5-2 and RO5-14, were isolated from Rudong marine solar saltern in Jiangsu, China. Cells of the two strains were pleomorphic, motile and stained Gram-negative. Colonies were red-pigmented. Strains RO5-2 and RO5-14 were able to grow at 20–50 °C (optimum 37 °C), at 2.6–4.8 M NaCl (optimum 3.4–3.9 M NaCl), at 0.03–0.7 M MgCl (optimum 0.5 M MgCl) and at pH 5.5–8.0 (optimum pH 6.5–7.0). Cells lyse in distilled water and the minimal NaCl concentration to prevent cell lysis was 12 % (w/v). The major polar lipids of the two strains were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester and two major glycolipids chromatographically identical to sulfated mannosyl glucosyl diether (S-DGD-1) and mannosyl glucosyl diether (DGD-1). The 16S rRNA gene sequences of strains RO5-2 and RO5-14 showed 93.4–93.8 % similarity to the closest cultivated relative, . The DNA G+C content of strains RO5-2 and RO5-14 was 61.0 mol% and 59.9 mol%, respectively. The DNA–DNA relatedness between strains RO5-2 and RO5-14 was 86.0 %. The phenotypic, chemotaxonomic and phylogenetic properties suggest that strains RO5-2 and RO5-14 represent a novel species in a new genus within the family , for which the name gen. nov., sp. nov. is proposed. The type strain is RO5-2 (=CGMCC 1.7739 =JCM 15773).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.018598-0
2010-09-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/9/2089.html?itemId=/content/journal/ijsem/10.1099/ijs.0.018598-0&mimeType=html&fmt=ahah

References

  1. Allen, M. A., Goh, F., Leuko, S., Echigo, A., Mizuki, T., Usami, R., Kamekura, M., Neilan, B. A. & Burns, B. P. ( 2008; ). Haloferax elongans sp. nov. and Haloferax mucosum sp. nov., isolated from microbial mats from Hamelin Pool, Shark Bay, Australia. Int J Syst Evol Microbiol 58, 798–802.[CrossRef]
    [Google Scholar]
  2. Bardavid, R. E., Mana, L. & Oren, A. ( 2007; ). Haloplanus natans gen. nov., sp. nov., an extremely halophilic, gas-vacuolate archaeon isolated from Dead Sea–Red Sea water mixtures in experimental outdoor ponds. Int J Syst Evol Microbiol 57, 780–783.[CrossRef]
    [Google Scholar]
  3. Burns, D. G., Janssen, P. H., Itoh, T., Kamekura, M., Li, Z., Jensen, G., Rodríguez-Valera, F., Bolhuis, H. & Dyall-Smith, M. L. ( 2007; ). Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain. Int J Syst Evol Microbiol 57, 387–392.[CrossRef]
    [Google Scholar]
  4. Chun, J., Lee, J.-H., Jung, Y., Kim, M., Kim, S., Kim, B. K. & Lim, Y.-W. ( 2007; ). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57, 2259–2261.[CrossRef]
    [Google Scholar]
  5. Cui, H.-L., Lin, Z.-Y., Dong, Y., Zhou, P.-J. & Liu, S.-J. ( 2007; ). Halorubrum litoreum sp. nov., an extremely halophilic archaeon from a solar saltern. Int J Syst Evol Microbiol 57, 2204–2206.[CrossRef]
    [Google Scholar]
  6. Cui, H.-L., Zhou, P.-J., Oren, A. & Liu, S.-J. ( 2009; ). Intraspecific polymorphism of 16S rRNA genes in two halophilic archaeal genera, Haloarcula and Halomicrobium. Extremophiles 13, 31–37.[CrossRef]
    [Google Scholar]
  7. De Ley, J., Cattoir, H. & Reynaerts, A. ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef]
    [Google Scholar]
  8. Dussault, H. P. ( 1955; ). An improved technique for staining red halophilic bacteria. J Bacteriol 70, 484–485.
    [Google Scholar]
  9. Dyall-Smith, M. L. ( 2008; ). The Halohandbook: protocols for haloarchaeal genetics. http://www.haloarchaea.com/resources/halohandbook.
  10. Fitch, W. M. ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20, 406–416.[CrossRef]
    [Google Scholar]
  11. Gonzalez, C., Gutierrez, C. & Ramirez, C. ( 1978; ). Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 24, 710–715.[CrossRef]
    [Google Scholar]
  12. Gutíérrez, C. & González, C. ( 1972; ). Method for simultaneous detection of proteinase and esterase activities in extremely halophilic bacteria. Appl Microbiol 24, 516–517.
    [Google Scholar]
  13. Gutiérrez, M. C., Castillo, A. M., Kamekura, M. & Ventosa, A. ( 2008; ). Haloterrigena salina sp. nov., an extremely halophilic archaeon isolated from a salt lake. Int J Syst Evol Microbiol 58, 2880–2884.[CrossRef]
    [Google Scholar]
  14. Huß, V. A. R., Festl, H. & Schleifer, K. H. ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef]
    [Google Scholar]
  15. Kates, M. ( 1986; ). In Techniques of Lipidology, 2nd revised edn, pp. 106–107, 187–188 and 251–254. Amsterdam. : Elsevier.
    [Google Scholar]
  16. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  17. Montalvo-Rodríguez, R., Vreeland, R. H., Oren, A., Kessel, M., Betancourt, C. & López-Garriga, J. ( 1998; ). Halogeometricum borinquense gen. nov., sp. nov., a novel halophilic archaeon from Puerto Rico. Int J Syst Bacteriol 48, 1305–1312.[CrossRef]
    [Google Scholar]
  18. Ng, W.-L., Yang, C.-F., Halladay, J. T., Arora, A. & DasSarma, S. ( 1995; ). Protocol 25. Isolation of genomic and plasmid DNAs from Halobacterium halobium. In Archaea: a Laboratory Manual: Halophiles, pp. 179–180. Edited by DasSarma, S. & Fleischmann, E. M.. Cold Spring Harbor, NY. : Cold Spring Harbor Laboratory.
    [Google Scholar]
  19. Oren, A. ( 2006; ). The order Halobacteriales. In The Prokaryotes: a Handbook on the Biology of Bacteria, 3rd edn, vol. 3, pp. 113–164. Edited by Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H. & Stackebrandt, E.. New York. : Springer.
    [Google Scholar]
  20. Oren, A., Ventosa, A. & Grant, W. D. ( 1997; ). Proposed minimal standards for description of new taxa in the order Halobacteriales. Int J Syst Bacteriol 47, 233–238.[CrossRef]
    [Google Scholar]
  21. Oren, A., Arahal, D. R. & Ventosa, A. ( 2009; ). Emended descriptions of genera of the family Halobacteriaceae. Int J Syst Evol Microbiol 59, 637–642.[CrossRef]
    [Google Scholar]
  22. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  23. Savage, K. N., Krumholz, L. R., Oren, A. & Elshahed, M. S. ( 2007; ). Haladaptatus paucihalophilus gen. nov., sp. nov., a halophilic archaeon isolated from a low-salt, sulfide-rich spring. Int J Syst Evol Microbiol 57, 19–24.[CrossRef]
    [Google Scholar]
  24. Savage, K. N., Krumholz, L. R., Oren, A. & Elshahed, M. S. ( 2008; ). Halosarcina pallida gen. nov., sp. nov., a halophilic archaeon from a low-salt, sulfide-rich spring. Int J Syst Evol Microbiol 58, 856–860.[CrossRef]
    [Google Scholar]
  25. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  26. Tamura, K., Dudley, J., Nei, M. & Kumar, S. ( 2007; ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef]
    [Google Scholar]
  27. Vaskovsky, V. E. & Kostetsky, E. Y. ( 1968; ). Modified spray for the detection of phospholipids on thin-layer chromatograms. J Lipid Res 9, 396.
    [Google Scholar]
  28. Xu, X.-W., Wu, Y.-H., Wang, C.-S., Oren, A., Zhou, P.-J. & Wu, M. ( 2007; ). Haloferax larsenii sp. nov., an extremely halophilic archaeon from a solar saltern. Int J Syst Evol Microbiol 57, 717–720.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.018598-0
Loading
/content/journal/ijsem/10.1099/ijs.0.018598-0
Loading

Data & Media loading...

Supplements

Scanning electron micrograph of cells of strain RO5-2 (a) and phase-contrast light micrograph of cells of strain RO5-14 (b). Bars, 1µm (a), 5µm (b).

IMAGE

Phylogenetic tree derived from maximum-parsimony analysis based on 16S rRNA gene sequences showing the relationship between strain RO5-2 , strain RO5-14 and other close relatives within the family . Only bootstraps values greater than 75% are shown (1000 replications). Bar, 50 expected changes per 1000 nucleotide positions.

IMAGE

Thin-layer chromatograms on Merck silica gel 60 F254 aluminium-backed thin-layer plates of the phospholipids (left) and glycolipids (right) from strain RO5-2 and related members of the family . Lanes: 1, ATCC 33170; 2, JCM 14791 ; 3, Strain RO5-2 ; 4, Strain RO5-14; 5, JCM 10706 ; 6, JCM 14081 . Circled spots are glycolipids of strain RO5-2 . PG, phosphatidylglycerol; PGP-Me, phosphatidylglycerol phosphate methyl ester; DGD-1, mannosyl glucosyl diether; S-DGD-1, sulfated mannosyl glucosyl diether; S-TGD, sulfated triglycosyl diether; S-TeGD, sulfated tetraglycosyl diether; F, first dimension of TLC; S, second dimension of TLC.

IMAGE

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error