1887

Abstract

Three housekeeping genes (, and ) of strains belonging to the genus (37 strains) or related taxa (38 strains) were sequenced. Reference strains of the 15 species of the genus were included. Phylogenetic trees generated using these gene sequences confirmed the existence of two phylogenetic groups within the genus . These groups clustered separately in trees constructed using concatenated sequences of the three genes, indicating that the genus should not remain a single genus and should be split, as suggested previously. Multilocus sequence analysis (MLSA) of the three housekeeping genes also proved useful for species differentiation in the family . It also suggested that LMG 18788, better known as the type and only strain of subsp. , represents a distinct species in the genus , and is not a true strain. In previous studies, this strain showed less than 70 % DNA relatedness to the type strains of and , the phylogenetically nearest relatives, and could be distinguished from them phenotypically. Additionally, AFLP and (GTG)-PCR DNA fingerprinting data supported its reclassification within a distinct species. The name (Toyosaki 1996) sp. nov., comb. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.018465-0
2010-10-01
2020-01-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/10/2277.html?itemId=/content/journal/ijsem/10.1099/ijs.0.018465-0&mimeType=html&fmt=ahah

References

  1. Asai, T., Iizuka, H. & Komagata, K. ( 1964; ). The flagellation and taxonomy of genera Gluconobacter and Acetobacter with reference to the existence of intermediate strains. J Gen Appl Microbiol 10, 95–126.[CrossRef]
    [Google Scholar]
  2. Brady, C., Cleenwerck, I., Venter, S., Vancanneyt, M., Swings, J. & Coutinho, T. ( 2008; ). Phylogeny and identification of Pantoea species associated with plants, humans and the natural environment based on multilocus sequence analysis (MLSA). Syst Appl Microbiol 31, 447–460.[CrossRef]
    [Google Scholar]
  3. Cleenwerck, I. & De Vos, P. ( 2008; ). Polyphasic taxonomy of acetic acid bacteria: an overview of the currently applied methodology. Int J Food Microbiol 125, 2–14.[CrossRef]
    [Google Scholar]
  4. Cleenwerck, I., De Wachter, M., González, Á., De Vuyst, L. & De Vos, P. ( 2009; ). Differentiation of species of the family Acetobacteraceae by AFLP DNA fingerprinting: Gluconacetobacter kombuchae is a later heterotypic synonym of Gluconacetobacter hansenii. Int J Syst Evol Microbiol 59, 1771–1786.[CrossRef]
    [Google Scholar]
  5. De Bruyne, K., Schillinger, U., Caroline, L., Boehringer, B., Cleenwerck, I., Vancanneyt, M., De Vuyst, L., Franz, C. M. A. P. & Vandamme, P. ( 2007; ). Leuconostoc holzapfelii sp. nov., isolated from Ethiopian coffee fermentation and assessment of sequence analysis of housekeeping genes for delineation of Leuconostoc species. Int J Syst Evol Microbiol 57, 2952–2959.[CrossRef]
    [Google Scholar]
  6. Dellaglio, F., Cleenwerck, I., Felis, G. E., Engelbeen, K., Janssens, D. & Marzotto, M. ( 2005; ). Description of Gluconacetobacter swingsii sp. nov. and Gluconacetobacter rhaeticus sp. nov., isolated from Italian apple fruit. Int J Syst Evol Microbiol 55, 2365–2370.[CrossRef]
    [Google Scholar]
  7. De Vuyst, L., Camu, N., De Winter, T., Vandemeulebroecke, K., Van de Perre, V., Vancanneyt, M., De Vos, P. & Cleenwerck, I. ( 2008; ). Validation of the (GTG)5-rep-PCR fingerprinting technique for rapid classification and identification of acetic acid bacteria, with a focus on isolates from Ghanaian fermented cocoa beans. Int J Food Microbiol 125, 79–90.[CrossRef]
    [Google Scholar]
  8. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  9. Gillis, M. & De Ley, J. ( 1980; ). Intra- and intergeneric similarities of the ribosomal ribonucleic acid cistrons of Acetobacter and Gluconobacter. Int J Syst Bacteriol 30, 7–27.[CrossRef]
    [Google Scholar]
  10. Gosselé, F., Swings, J. & De Ley, J. ( 1980; ). A rapid, simple and simultaneous detection of 2-keto, 5-keto- and 2,5-diketogluconic acids by thin-layer chromatography in culture media of acetic acid bacteria. Zentbl Bakteriol Parasitenkd Infektionskr Hyg Abt 1 Orig Reihe C1, 178–181.
    [Google Scholar]
  11. Kojima, Y., Tonouchi, N., Tsuchida, T., Yoshinaga, F. & Yamada, Y. ( 1998; ). The characterization of acetic acid bacteria efficiently producing bacterial cellulose from sucrose: the proposal of Acetobacter xylinum subsp. nonacetoxidans subsp. nov. Biosci Biotechnol Biochem 62, 185–187.[CrossRef]
    [Google Scholar]
  12. Konstantinidis, K. T., Ramette, A. & Tiedje, J. M. ( 2006; ). Towards a more robust assessment of intra-species diversity using fewer genetic markers. Appl Environ Microbiol 72, 7286–7293.[CrossRef]
    [Google Scholar]
  13. Lisdiyanti, P., Navarro, R. R., Uchimura, T. & Komagata, K. ( 2006; ). Reclassification of Gluconacetobacter hansenii strains and proposals of Gluconacetobacter saccharivorans sp. nov. and Gluconacetobacter nataicola sp. nov. Int J Syst Evol Microbiol 56, 2101–2111.[CrossRef]
    [Google Scholar]
  14. Martens, M., Delaere, M., Coopman, R., De Vos, P., Gillis, M. & Willems, A. ( 2007; ). Multilocus sequence analysis of Ensifer and related taxa. Int J Syst Evol Microbiol 57, 489–503.[CrossRef]
    [Google Scholar]
  15. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  16. Naser, S. M., Thompson, F. L., Hoste, B., Gevers, D., Dawyndt, P., Vancanneyt, M. & Swings, J. ( 2005; ). Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 151, 2141–2150.[CrossRef]
    [Google Scholar]
  17. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  18. Tindall, B. J., Rosselló-Móra, R., Busse, H.-J., Ludwig, W. & Kämpfer, P. ( 2010; ). Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60, 249–266.[CrossRef]
    [Google Scholar]
  19. Toyosaki, H., Kojima, Y., Tsuchida, T., Hoshino, K., Yamada, Y. & Yoshinaga, F. ( 1995; ). The characterization of an acetic acid bacterium useful for producing bacterial cellulose in agitation cultures: the proposal of Acetobacter xylinum subsp. sucrofermentans subsp. nov. J Gen Appl Microbiol 41, 307–314.[CrossRef]
    [Google Scholar]
  20. Toyosaki, H., Kojima, Y., Tsuchida, T., Hoshino, K., Yamada, Y. & Yoshinaga, F. ( 1996; ). Acetobacter xylinum subsp. sucrofermentans subsp. nov. In Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB, List no. 58. Int J Syst Bacteriol 46, 836–837.[CrossRef]
    [Google Scholar]
  21. Yamada, Y. & Yukphan, P. ( 2008; ). Genera and species in acetic acid bacteria. Int J Food Microbiol 125, 15–24.[CrossRef]
    [Google Scholar]
  22. Yamada, Y., Hoshino, K. & Ishikawa, T. ( 1997; ). The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: the elevation of the subgenus Gluconoacetobacter to the generic level. Biosci Biotechnol Biochem 61, 1244–1251.[CrossRef]
    [Google Scholar]
  23. Yamada, Y., Hoshino, K. & Ishikawa, T. ( 1998; ). Gluconacetobacter nom. corrig. [Gluconoacetobacter (sic)]. In Validation of Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB. List no. 64. Int J Syst Bacteriol 48, 327–328.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.018465-0
Loading
/content/journal/ijsem/10.1099/ijs.0.018465-0
Loading

Data & Media loading...

Supplements

vol. , part 10, pp. 2277 - 2283

Strains of acetic acid bacteria used in this study.

Sequence similarities between comb. nov. LMG 18788 and strains of its nearest phylogenetic neighbours.

Neighbour-joining tree based on 16S rRNA gene sequences of the type strains of species of the family .

Maximum-parsimony tree based on concatenated , and gene sequences, showing the relationships of species of the genus and related species.

Neighbour-joining trees based on (Fig. S3), (Fig. S4) and (Fig. S5) gene sequences of acetic acid bacteria strains, showing the relationships of species of the genus and related species.

[PDF file of Supplementary Tables and Figures](189 KB)



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error