1887

Abstract

A novel strain of fermenting, aerotolerant, chemo-organoheterotrophic spirochaete designated P was isolated from a sulfur ‘Thiodendron’ mat in a saline spring at the Staraya Russa resort (Novgorod Region, Russia). Cells of strain P exhibited a helical shape. The spirochaete required sulfide in the growth medium and was able to oxidize it non-enzymically to elemental sulfur via the interaction of HO with sulfide and deposit it in the periplasmic space. Growth occurred at 4–32 °C (optimum at 28–30 °C), pH 6.0–8.5 (optimum pH 7.0–7.5), and in 0.1–1 M NaCl (optimum 0.35 M). The isolate used several sugars and polysaccharides as carbon or energy sources but did not use peptides, amino acids, organic acids or alcohols. The products of glucose fermentation were formate, acetate, ethanol, pyruvate, CO and H. The genomic DNA G+C content was 41.7 mol%. 16S rRNA gene sequence analysis showed that strain P fell within a group of species in the genus , including , and , with which it shared less then 89 % sequence similarity. On the basis of its morphology, physiology and other phenotypic properties, as well as its phylogenetic position, the new isolate is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is P (=DSM 19205 =VKM B-2514).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.018333-0
2011-01-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/1/110.html?itemId=/content/journal/ijsem/10.1099/ijs.0.018333-0&mimeType=html&fmt=ahah

References

  1. Breznak, J. A. & Canale-Parola, E. ( 1975; ). Morphology and physiology of Spirochaeta aurantia strains isolated from aquatic habitats. Arch Microbiol 105, 1–12.[CrossRef]
    [Google Scholar]
  2. Breznak, J. A. & Warnecke, F. ( 2008; ). Spirochaeta cellobiopsophila sp. nov., a facultatively anaerobic marine spirochete. Int J Syst Evol Microbiol 58, 2762–2768.[CrossRef]
    [Google Scholar]
  3. De Ley, J. ( 1970; ). Reexamination of the association between melting point, buoyant density and chemical base composition of DNA. J Bacteriol 101, 738–754.
    [Google Scholar]
  4. Dubinina, G. A., Leshcheva, N. V. & Grabovich, M. Yu. ( 1993a; ). The colorless sulfur bacterium Thiodendron is actually a symbiotic association of spirochetes and sulfidogens. Microbiology (English translation of Mikrobiologiia) 62, 432–444.
    [Google Scholar]
  5. Dubinina, G. A., Grabovich, M. Yu. & Leshcheva, N. V. ( 1993b; ). Occurrence, structure and metabolic activity of “Thiodendron” sulfur mats in various saltwater environments. Microbiology (English translation of Mikrobiologiia) 62, 450–456.
    [Google Scholar]
  6. Dubinina, G. A., Grabovich, M. Yu. & Chernyshova, Yu. Yu. ( 2004; ). The role of oxygen in the regulation of the metabolism of aerotolerant spirochetes, the main component of ‘Thiodendron’ bacterial sulfur mats. Mikrobiologiia 73, 725–733 (in Russian).
    [Google Scholar]
  7. Ehrenberg, C. G. ( 1835; ). Dritter Beitrag zur Erkenntniss grosser Organisation in der Richtung des kleinsten Raumes. In Abhandlungen der Preussischen Akademie der Wissenschaften (Berlin) aus den Jahre 1833–1835, pp. 143–336 (in German).
  8. Fitch, W. M. ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20, 406–416.[CrossRef]
    [Google Scholar]
  9. Harwood, C. S. & Canale-Parola, E. ( 1983; ). Spirochaeta isovalerica sp. nov., a marine anaerobe that forms branched-chain fatty acids as fermentation products. Int J Syst Bacteriol 33, 573–579.[CrossRef]
    [Google Scholar]
  10. Hespell, R. B. & Canale-Parola, E. ( 1970; ). Spirochaeta litoralis sp. n., a strictly anaerobic marine spirochete. Arch Mikrobiol 74, 1–18.[CrossRef]
    [Google Scholar]
  11. Hoover, R. B., Pikuta, E. V., Bej, A. K., Marsic, D., Whitman, W. B., Tang, J. & Krader, P. ( 2003; ). Spirochaeta americana sp. nov., a new haloalkaliphilic, obligately anaerobic spirochaete isolated from soda Mono Lake in California. Int J Syst Evol Microbiol 53, 815–821.[CrossRef]
    [Google Scholar]
  12. Hovind-Hougen, K. ( 1976; ). Determination by means of electron microscopy of morphological criteria of value for classification of some spirochetes, in particular treponemes. Acta Pathol Microbiol Scand Suppl 225, 1–41.
    [Google Scholar]
  13. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by Munro, H. N.. New York. : Academic Press.
    [Google Scholar]
  14. Leschine, S., Paster, B. J. & Canale-Parola, E. ( 2006; ). Free-living saccharolytic spirochetes: the genus Spirochaeta. In The Prokaryotes 3rd edn, vol. 7, pp. 195–210. Edited by Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H. & Stackebrandt, E.. New York. : Springer.
    [Google Scholar]
  15. Livermore, B. P. & Johnson, R. C. ( 1974; ). Lipids of the Spirochaetales: comparison of the lipids of several members of the genera Spirochaeta, Treponema, and Leptospira. J Bacteriol 120, 1268–1273.
    [Google Scholar]
  16. Luft, J. H. ( 1971; ). Ruthenium red and violet. 1. Chemistry, purification, methods of use for electron microscopy and mechanism of action. Anat Rec 171, 347–368.[CrossRef]
    [Google Scholar]
  17. Magot, M., Fardeau, M. L., Arnauld, O., Lanau, C., Ollivier, B., Thomas, P. & Patel, B. K. ( 1997; ). Spirochaeta smaragdinae sp. nov., a new mesophilic strictly anaerobic spirochete from an oil field. FEMS Microbiol Lett 155, 185–191.[CrossRef]
    [Google Scholar]
  18. Margulis, L. ( 2002; ). Spirochetes. In Encyclopedia of Microbiology, 2nd edn, vol. 4, pp. 353–363. Edited by Lederberg, J.. New York. : Academic Press.
    [Google Scholar]
  19. Margulis, L., Maniotis, A., MacAllister, J., Scythes, J., Brorson, O., Hall, J., Krumbein, W. E. & Chapman, M. J. ( 2009; ). Spirochete round bodies. Syphilis, Lyme disease & AIDS: resurgence of “the great imitator”? Symbiosis 47, 51–58.[CrossRef]
    [Google Scholar]
  20. Marmur, J. ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef]
    [Google Scholar]
  21. Olsen, I., Paster, B. J. & Dewhirst, F. E. ( 2000; ). Taxonomy of spirochetes. Anaerobe 6, 39–57.[CrossRef]
    [Google Scholar]
  22. Owen, R. J. & Lapage, S. P. ( 1976; ). The thermal denaturation of partly purified bacterial deoxyribonucleic acid and its taxonomic applications. J Appl Bacteriol 41, 335–340.[CrossRef]
    [Google Scholar]
  23. Paster, B. J. & Dewhirst, F. E. ( 2000; ). Phylogenetic foundation of spirochetes. J Mol Microbiol Biotechnol 2, 341–344.
    [Google Scholar]
  24. Paster, B. J., Pelletier, D. A., Dewhirst, F. E., Weisburg, W. G., Fussing, V., Poulsen, L. K., Dannenberg, S. & Schroeder, I. ( 1996; ). Phylogenetic position of the spirochetal genus Cristispira. Appl Environ Microbiol 62, 942–946.
    [Google Scholar]
  25. Perfil'ev, B. V. ( 1969; ). On new sulfur-iron microorganism Thiodendron latens and on the method of its cultivation in elective cultures. Izv Akad Nauk SSSR Biol 2, 181–198 (in Russian).
    [Google Scholar]
  26. Pfennig, N. & Lippert, K. D. ( 1966; ). Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Arch Mikrobiol 55, 425–432 (in German).
    [Google Scholar]
  27. Pikuta, E. V., Hoover, R. B., Bej, A. K., Marsic, D., Whitman, W. B. & Krader, P. ( 2009; ). Spirochaeta dissipatitropha sp. nov., an alkaliphilic, obligately anaerobic bacterium, and emended description of the genus Spirochaeta Ehrenberg 1835. Int J Syst Evol Microbiol 59, 1798–1804.[CrossRef]
    [Google Scholar]
  28. Rainey, F. A., Ward-Rainey, N., Kroppenstedt, R. M. & Stackebrandt, E. ( 1996; ). The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46, 1088–1092.[CrossRef]
    [Google Scholar]
  29. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  30. Scheminzky, F., Klas, Z. & Job, C. ( 1972; ). Über das Vorkommen von Thiobacterium bovista in Thermalwässern. Int Rev Gesamten Hydrobiol 57, 801–813 (in German).[CrossRef]
    [Google Scholar]
  31. Stead, D. E., Sellwood, J. E., Wilson, J. & Viney, I. ( 1992; ). Evaluation of a commercial microbial identification system based on fatty acid profiles for rapid, accurate identification of plant pathogenic bacteria. J Appl Bacteriol 72, 315–321.[CrossRef]
    [Google Scholar]
  32. Stephens, E. A., Braissant, O. & Visscher, P. T. ( 2008; ). Spirochetes and salt marsh microbial mat geochemistry: implications for the fossil record. Carnets Geol/Noteb GeolCG2008_A09.
    [Google Scholar]
  33. Surkov, A. V., Dubinina, G. A., Lysenko, A. M., Glöckner, F. O. & Kuever, J. ( 2001; ). Dethiosulfovibrio russensis sp. nov., Dethiosulfovibrio marinus sp. nov. and Dethiosulfovibrio acidaminovorans sp. nov., novel anaerobic, thiosulfate- and sulfur- reducing bacteria isolated from ‘Thiodendron’ sulfur mats in different saline environments. Int J Syst Evol Microbiol 51, 327–337.
    [Google Scholar]
  34. Tamura, K., Dudley, J., Nei, M. & Kumar, S. ( 2007; ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef]
    [Google Scholar]
  35. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  36. Trueba, G. ( 2008; ). Leptospirosis in Ecuador. Oral presentation at conference Spirochaete co-evolution in the Proterozoic Eon: Ecology, symbiosis and pathogenesis, an excursion into environmental immunology, 1–2 May 2008, Berlin Natural History Museum. Recorded by J. MacAllister.
  37. Zhilina, T. N., Zavarzin, G. A., Rainey, F., Kevbrin, V. V., Kostrikina, N. A. & Lysenko, A. M. ( 1996; ). Spirochaeta alkalica sp. nov., Spirochaeta africana sp. nov., and Spirochaeta asiatica sp. nov., alkaliphilic anaerobes from the Continental Soda Lakes in Central Asia and the East African Rift. Int J Syst Bacteriol 46, 305–312.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.018333-0
Loading
/content/journal/ijsem/10.1099/ijs.0.018333-0
Loading

Data & Media loading...

vol. , part 1, pp. 110 - 117

IMAGE

vol. , part 1, pp. 110 - 117

IMAGE

Neighbour-joining phylogenetic tree of the family , based on 16S rRNA gene sequences. Bootstrap values greater than >50% (1000 resamplings) are shown. Bar, 0.02 substitutions per nucleotide position. [PDF]

PDF

Supplementary method for preparation of growth medium for cultivation of strain P in pure culture, a table of the microelement solution composition for the growth medium and a table displaying the fatty acid and aldehyde compositions of sulfur-oxidizing spirochaete P compared with that of R1 . [PDF]

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error