1887

Abstract

Strain BZ30 was isolated from hydrocarbon-contaminated soil. The Gram-negative, aerobic bacterium was psychrophilic and able to grow at temperatures ranging from 1 to 30 °C. The predominant cellular fatty acids of strain BZ30 were summed feature 3 (C 7 and/or iso-C 2-OH) (37.4 %), C 7 (19.6 %), C (8.2 %), C 2-OH (8.0 %) and C 2-OH (5.0 %). The predominant ubiquinone was Q-10. Major polar lipids were sphingoglycolipids, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phosphatidylcholine. Spermidine was the major polyamine. The genomic DNA G+C content was 64.4 mol%. Phylogenetic analysis based on 16S rRNA gene sequence similarity showed that strain BZ30 belonged to the family of the -4 group of the phylum , and was related to the members of the genus , sharing the highest sequence similarities with the type strains of (98.3 %), . (98.2 %), . (97.4 %) and . (97.2 %). On the basis of the phenotypic characteristics, phylogenetic analysis and DNA–DNA relatedness data, strain BZ30 represents a novel species of the genus , for which the name is proposed. The type strain is BZ30 (=DSM 22271 =CGMCC 1.8959 =CIP 110136).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.018218-0
2010-11-01
2019-12-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/11/2618.html?itemId=/content/journal/ijsem/10.1099/ijs.0.018218-0&mimeType=html&fmt=ahah

References

  1. Brosius, J., Palmer, M. L., Kennedy, P. J. & Noller, H. F. ( 1978; ). Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci U S A 75, 4801–4805.[CrossRef]
    [Google Scholar]
  2. Busse, H.-J. & Auling, G. ( 1988; ). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 11, 1–8.[CrossRef]
    [Google Scholar]
  3. Busse, H.-J., Bunka, S., Hensel, A. & Lubitz, W. ( 1997; ). Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47, 698–708.[CrossRef]
    [Google Scholar]
  4. Busse, H.-J., Kämpfer, P. & Denner, E. B. M. ( 1999; ). Chemotaxonomic characterisation of Sphingomonas. J Ind Microbiol Biotechnol 23, 242–251.[CrossRef]
    [Google Scholar]
  5. Busse, H.-J., Denner, E. B. M., Buczolits, S., Salkinoja-Salonen, M., Bennasar, A. & Kämpfer, P. ( 2003; ). Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov., air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas. Int J Syst Evol Microbiol 53, 1253–1260.[CrossRef]
    [Google Scholar]
  6. Collins, M. D. ( 1985; ). Isoprenoid quinone analysis in classification and identification. In Chemical Methods in Bacterial Systematics, pp. 267–287. Edited by Goodfellow, M. & Minnikin, D. E.. London. : Academic Press.
    [Google Scholar]
  7. De Ley, J., Cattoir, H. & Reynaerts, A. ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef]
    [Google Scholar]
  8. Godoy, F., Vancanneyt, M., Martínez, M., Steinbüchel, A., Swings, J. & Rehm, B. H. A. ( 2003; ). Sphingopyxis chilensis sp. nov., a chlorophenol-degrading bacterium that accumulates polyhydroxyalkanoate, and transfer of Sphingomonas alaskensis to Sphingopyxis alaskensis comb. nov. Int J Syst Evol Microbiol 53, 473–477.[CrossRef]
    [Google Scholar]
  9. Huß, V. A. R., Festl, H. & Schleifer, K. H. ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef]
    [Google Scholar]
  10. Kämpfer, P., Witzenberger, R., Denner, E. B. M., Busse, H.-J. & Neef, A. ( 2002; ). Sphingopyxis witflariensis sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 52, 2029–2034.[CrossRef]
    [Google Scholar]
  11. Kates, M. ( 1986; ). Techniques of Lipidology, 2nd edn. Amsterdam. : Elsevier.
    [Google Scholar]
  12. Kim, M. K., Im, W.-T., Ohta, H., Lee, M. & Lee, S.-T. ( 2005; ). Sphingopyxis granuli sp. nov., a β-glucosidase-producing bacterium in the family Sphingomonadaceae in α-4 subclass of the Proteobacteria. J Microbiol 43, 152–157.
    [Google Scholar]
  13. Kim, B.-S., Lim, Y. W. & Chun, J. ( 2008; ). Sphingopyxis marina sp. nov. and Sphingopyxis litoris sp. nov., isolated from seawater. Int J Syst Evol Microbiol 58, 2415–2419.[CrossRef]
    [Google Scholar]
  14. Lee, J.-S., Shin, Y. K., Yoon, J.-H., Takeuchi, M., Pyun, Y.-R. & Park, Y.-H. ( 2001; ). Sphingomonas aquatilis sp. nov., Sphingomonas koreensis sp. nov. and Sphingomonas taejonensis sp. nov., yellow-pigmented bacteria isolated from natural mineral water. Int J Syst Evol Microbiol 51, 1491–1498.
    [Google Scholar]
  15. Lee, M., Ten, L. N., Lee, H.-W., Oh, H. W., Im, W.-T. & Lee, S.-T. ( 2008; ). Sphingopyxis ginsengisoli sp. nov., isolated from soil of a ginseng field in South Korea. Int J Syst Evol Microbiol 58, 2342–2347.[CrossRef]
    [Google Scholar]
  16. Margesin, R., Gander, S., Zacke, G., Gounot, A. M. & Schinner, F. ( 2003; ). Hydrocarbon degradation and enzyme activities of cold-adapted bacteria and yeasts. Extremophiles 7, 451–458.[CrossRef]
    [Google Scholar]
  17. Pal, R., Bhasin, V. K. & Lal, R. ( 2006; ). Proposal to reclassify [Sphingomonas] xenophaga Stolz et al. 2000 and [Sphingomonas] taejonensis Lee et al. 2001 as Sphingobium xenophagum comb. nov. and Sphingopyxis taejonensis comb. nov., respectively. Int J Syst Evol Microbiol 56, 667–670.[CrossRef]
    [Google Scholar]
  18. Sambrook, J., Frisch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY. : Cold Spring Harbor Laboratory.
    [Google Scholar]
  19. Sasser, M. ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  20. Stolz, A., Busse, H.-J. & Kämpfer, P. ( 2007; ). Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 57, 572–576.[CrossRef]
    [Google Scholar]
  21. Takeuchi, M., Kawai, F., Shimada, Y. & Yokota, A. ( 1993; ). Taxonomic study of polyethylene glycol-utilizing bacteria: emended description of the genus Sphingomonas and new descriptions of Sphingomonas macrogoltabidus sp. nov., Sphingomonas sanguis sp. nov. and Sphingomonas terrae sp. nov. Syst Appl Microbiol 16, 227–238.[CrossRef]
    [Google Scholar]
  22. Takeuchi, M., Hamana, K. & Hiraishi, A. ( 2001; ). Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51, 1405–1417.
    [Google Scholar]
  23. Vancanneyt, M., Schut, F., Snauwaert, C., Goris, J., Swings, J. & Gottschal, J. C. ( 2001; ). Sphingomonas alaskensis sp. nov., a dominant bacterium from a marine oligotrophic environment. Int J Syst Evol Microbiol 51, 73–79.
    [Google Scholar]
  24. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  25. Wu, C., Lu, X., Qin, M., Wang, Y. & Ruan, J. ( 1989; ). Analysis of menaquinone compound in microbial cells by HPLC. Microbiology [English translation of Microbiology (Beijing)] 16, 176–178.
    [Google Scholar]
  26. Yabuuchi, E., Yano, I., Oyaizu, H., Hashimoto, Y., Ezaki, T. & Yamamoto, H. ( 1990; ). Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 34, 99–119.[CrossRef]
    [Google Scholar]
  27. Yabuuchi, E., Kosako, Y., Fujiwara, N., Naka, T., Matsunaga, I., Ogura, H. & Kobayashi, K. ( 2002; ). Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola. . Int J Syst Evol Microbiol 52, 1485–1496.[CrossRef]
    [Google Scholar]
  28. Yoon, J.-H. & Oh, T.-K. ( 2005; ). Sphingopyxis flavimaris sp. nov., isolated from sea water of the Yellow Sea in Korea. Int J Syst Evol Microbiol 55, 369–373.[CrossRef]
    [Google Scholar]
  29. Yoon, J.-H., Lee, C.-H., Yeo, S.-H. & Oh, T.-K. ( 2005; ). Sphingopyxis baekryungensis sp. nov., an orange-pigmented bacterium isolated from sea water of the Yellow Sea in Korea. Int J Syst Evol Microbiol 55, 1223–1227.[CrossRef]
    [Google Scholar]
  30. Zhang, D.-C., Wang, H.-X., Liu, H.-C., Dong, X.-Z. & Zhou, P.-J. ( 2006; ). Flavobacterium glaciei sp. nov., a novel psychrophilic bacterium isolated from the China No.1 glacier. Int J Syst Evol Microbiol 56, 2921–2925.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.018218-0
Loading
/content/journal/ijsem/10.1099/ijs.0.018218-0
Loading

Data & Media loading...

Supplements

, 2nd edn. Amsterdam: Elsevier.

IMAGE

Comparison of cellular fatty acid compositions (%) of BZ30 with related species of the genus . [ PDF] (60 KB)

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error