1887

Abstract

A novel Gram-negative, aerobic, motile, short rod-shaped bacterium, designated MS-3, was isolated from a crude oil-contaminated seashore in Taean, Korea. Strain MS-3 grew at 4–30 °C, at pH 6.0–9.5 and with 0–5 % NaCl and was oxidase- and catalase-positive. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain MS-3 was most similar to KMM 3042 (97.9 % 16S rRNA gene sequence similarity), 1N (97.8 %), R-20821 (97.3 %) and ATCC 49968 (97.1 %). Relatively low levels of DNA–DNA relatedness were found between strain MS-3 and LMG 24676 (57.2 %), LMG 23199 (39.7 %), KMM 3042 (32.2 %) and KACC 10832 (32.1 %), which support the classification of strain MS-3 within a novel species of the genus . The G+C content of the genomic DNA of strain MS-3 was 57.6 mol% and the major isoprenoid quinone was Q-9. Strain MS-3 contained summed feature 3 (iso-C 2-OH and/or C 7; 38.0 %), C (24.4 %), C 7 (12.8 %), C (9.6 %) and C 3-OH (4.9 %) as the major cellular fatty acids. On the basis of the phenotypic, genotypic and phylogenetic data, strain MS-3 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is MS-3 (=KCTC 22612 =KACC 14032 =JCM 16046 =NBRL 105641).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.018093-0
2010-12-01
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/12/2719.html?itemId=/content/journal/ijsem/10.1099/ijs.0.018093-0&mimeType=html&fmt=ahah

References

  1. Anzai, Y., Kim, H., Park, J.-Y., Wakabayashi, H. & Oyaizu, H. ( 2000; ). Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50, 1563–1589.[CrossRef]
    [Google Scholar]
  2. Bernardet, J. F., Nakagawa, Y. & Holmes, B. ( 2002; ). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52, 1049–1070.[CrossRef]
    [Google Scholar]
  3. Bhattacharya, D., Sarma, P. M., Krishnan, S., Mishra, S. & Lal, B. ( 2003; ). Evaluation of genetic diversity among Pseudomonas citronellolis strains isolated from oily sludge-contaminated sites. Appl Environ Microbiol 69, 1435–1441.[CrossRef]
    [Google Scholar]
  4. Bowman, J. P. ( 2000; ). Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 50, 1861–1868.
    [Google Scholar]
  5. Chun, J., Lee, J.-H., Jung, Y., Kim, M., Kim, S., Kim, B. K. & Lim, Y. W. ( 2007; ). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57, 2259–2261.[CrossRef]
    [Google Scholar]
  6. Cole, J. R., Chai, B., Marsh, T. L., Farris, R. J., Wang, Q., Kulam, S. A., Chandra, S., McGarrell, D. M., Schmidt, T. M. & other authors ( 2003; ). The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31, 442–443.[CrossRef]
    [Google Scholar]
  7. Elkin, S. & Geddes, D. ( 2003; ). Pseudomonal infection in cystic fibrosis: the battle continues. Expert Rev Anti Infect Ther 1, 609–618.[CrossRef]
    [Google Scholar]
  8. Felsenstein, J. ( 1985; ). Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  9. Gupta, S. K., Rekha Kumari, R., Om Prakash, O. & Lal, R. ( 2008; ). Pseudomonas panipatensis sp. nov., isolated from an oil-contaminated site. Int J Syst Evol Microbiol 58, 1339–1345.[CrossRef]
    [Google Scholar]
  10. Hansen, G. H. & Sørheim, R. ( 1991; ). Improved method for phenotypical characterization of marine bacteria. J Microbiol Methods 13, 231–241.[CrossRef]
    [Google Scholar]
  11. Johnsen, K., Andersen, S. & Jacobsen, C. S. ( 1996; ). Phenotypic and genotypic characterization of phenanthrene-degrading fluorescent Pseudomonas biovars. Appl Environ Microbiol 62, 3818–3825.
    [Google Scholar]
  12. Kahng, H.-Y., Nam, K., Kukor, J. J., Yoon, B.-J., Lee, D.-H., Oh, D.-C., Kam, S.-K. & Oh, K.-H. ( 2002; ). PAH utilization by Pseudomonas rhodesiae KK1 isolated from a former manufactured-gas plant site. Appl Microbiol Biotechnol 60, 475–480.[CrossRef]
    [Google Scholar]
  13. Kimura, M. ( 1983; ). The Neutral Theory of Molecular Evolution. Cambridge. : Cambridge University Press.
    [Google Scholar]
  14. King, E. O., Ward, M. K. & Rainey, D. E. ( 1954; ). Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med 44, 301–307.
    [Google Scholar]
  15. Kiyohara, H., Takizawa, N. & Nagao, K. ( 1992; ). Natural distribution of bacteria metabolizing many kinds of polycyclic aromatic hydrocarbons. J Ferment Bioeng 74, 49–51.[CrossRef]
    [Google Scholar]
  16. Komagata, K. & Suzuki, K. ( 1987; ). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19, 161–207.
    [Google Scholar]
  17. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  18. Lane, D. J. ( 1991; ). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt, E. & Goodfellow, M.. New York. : Wiley.
    [Google Scholar]
  19. Levitski-Heikkila, T. V. & Ullian, M. E. ( 2005; ). Peritonitis with multiple rare environmental bacteria in a patient receiving long-term peritoneal dialysis. Am J Kidney Dis 46, e119–e124.[CrossRef]
    [Google Scholar]
  20. López-Romalde, S., Magarinõs, B., Ravelo, C., Toranzo, A. E. & Romalde, J. L. ( 2003; ). Existence of two O-serotypes in the fish pathogen Pseudomonas anguilliseptica. Vet Microbiol 94, 325–333.[CrossRef]
    [Google Scholar]
  21. Marmur, J. & Doty, P. ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef]
    [Google Scholar]
  22. Mikesell, M. D., Kukor, J. J. & Olsen, R. H. ( 1993; ). Metabolic diversity of aromatic hydrocarbon-degrading bacteria from a petroleum-contaminated aquifer. Biodegradation 4, 249–259.
    [Google Scholar]
  23. Mishra, S., Lal, B., Jyot, J., Rajan, S. & Khanna, S. ( 1999; ). Field study: in situ bioremediation of oily sludge contaminated land using oilzapper. In Proceedings of Hazardous and Industrial Wastes Symposium, pp. 177–186. Edited by Bishop, D.. Lancaster, PA. : Technomic Publishing Co.
    [Google Scholar]
  24. Mishra, S., Jyot, J., Kuhad, R. C. & Lal, B. ( 2001; ). In situ bioremediation potential of an oily sludge-degrading bacterial consortium. Curr Microbiol 43, 328–335.[CrossRef]
    [Google Scholar]
  25. O'Mahony, M. M., Dobson, A. D., Barnes, J. D. & Singleton, I. ( 2006; ). The use of ozone in the remediation of polycyclic aromatic hydrocarbon contaminated soil. Chemosphere 63, 307–314.[CrossRef]
    [Google Scholar]
  26. Onaca, C., Kieninger, M., Engesser, K.-H. & Altenbuchner, J. ( 2007; ). Degradation of alkyl methyl ketones by Pseudomonas veronii MEK700. J Bacteriol 189, 3759–3767.[CrossRef]
    [Google Scholar]
  27. Oyaizu, H. & Komagata, K. ( 1983; ). Grouping of Pseudomonas species on the basis of cellular fatty acid composition and the quinone system with special reference to the existence of 3-hydroxy fatty acids. J Gen Appl Microbiol 29, 17–40.[CrossRef]
    [Google Scholar]
  28. Palleroni, N. J. ( 1984; ). Genus I. Pseudomonas Migula 1984, 237AL. In Bergey's Manual of Systematic Bacteriology, vol. 1, pp. 141–199. Edited by Krieg, N. R. & Holt, J. G.. Baltimore. : Williams & Wilkins.
    [Google Scholar]
  29. Palleroni, N. J. ( 1993; ). Pseudomonas classification. A new case history in the taxonomy of Gram-negative bacteria. Antonie van Leeuwenhoek 64, 231–251.
    [Google Scholar]
  30. Prakash, O., Kumari, K. & Lal, R. ( 2007; ). Pseudomonas delhiensis sp. nov., from a fly ash dumping site of a thermal power plant. Int J Syst Evol Microbiol 57, 527–531.[CrossRef]
    [Google Scholar]
  31. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  32. Sneath, P. H. A., Stevens, M. & Sackin, M. J. ( 1981; ). Numerical taxonomy of Pseudomonas based on published records of substrate utilization. Antonie van Leeuwenhoek 47, 423–448.[CrossRef]
    [Google Scholar]
  33. Stolz, A., Busse, H.-J. & Kämpfer, P. ( 2007; ). Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 57, 572–576.[CrossRef]
    [Google Scholar]
  34. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  35. Vancanneyt, M., Segers, P., Torck, U., Hoste, B., Bernardet, J.-F., Vandamme, P. & Kersters, K. ( 1996; ). Reclassification of Flavobacterium odoraturn (Stutzer 1929) strains to a new genus, Myroides, as Myroides odoratus comb. nov. and Myroides odoratimimus sp. nov. Int J Syst Bacteriol 46, 926–932.[CrossRef]
    [Google Scholar]
  36. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  37. Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J. ( 1991; ). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173, 697–703.
    [Google Scholar]
  38. Whyte, L. G., Goalen, B., Hawari, J., Labbe, D., Greer, C. W. & Nahir, M. ( 2001; ). Bioremediation treatability assessment of hydrocarbon-contaminated soils from Eureka, Nunavut. Cold Reg Sci Technol 32, 121–132.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.018093-0
Loading
/content/journal/ijsem/10.1099/ijs.0.018093-0
Loading

Data & Media loading...

Supplements

Slot-blot DNA–DNA hybridization assays between strain MS-3 probe DNA and strain MS-3 (a), KMM 3042 (b), LMG 24676 (c), LMG 23199 (d) and KACC 10832 (e), using 10 ng (lane 1) and 1 ng (lane 2) total DNA.

IMAGE

Transmission electron micrograph showing the general morphology of a negatively stained cell of strain MS-3 after growth on LB agar at 30 °C for 2 days. Bar, 1 µm.

IMAGE

Biolog GN2 MicroPlate results for strain MS-3 and its closest relatives in the genus . [PDF](54 KB)

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error