1887

Abstract

We isolated from compost an aerobic, thermophilic, Gram-stain-positive, spore-forming bacterium that formed branched vegetative and aerial mycelia. This strain, designated SK20-1, grew at 31–58 °C, with optimum growth at 50 °C, while no growth was observed below 28 or above 60 °C. The pH range for growth was 5.4–8.7, with optimum growth at pH 7.0, while no growth was observed below pH 5.0 or above pH 9.1. Strain SK20-1 was able to hydrolyse polysaccharides such as cellulose, xylan and chitin. The DNA G+C content was 54.0 mol%. The major fatty acid was iso-C and the major menaquinone was MK-9(H). The cell wall contained glutamic acid, serine, alanine and ornithine in a molar ratio of 1.00 : 1.07 : 2.64 : 0.83. The polar lipids consisted of phosphatidylinositol, phosphatidylinositol mannosides, phosphatidylglycerol, diphosphatidylglycerol and an unknown glycolipid. Cell-wall sugars were rhamnose and mannose. Detailed phylogenetic analysis based on 16S rRNA gene sequences indicated that strain SK20-1 belongs to the class , and that the strain is most closely related to SOSP1-21 (88.5 %). On the basis of its phenotypic features and phylogenetic position, we propose that SK20-1 represents a novel genus and species, gen. nov., sp. nov., within the new family fam. nov. The type strain of is strain SK20-1 (=JCM 16142 =ATCC BAA-1881). In addition, we propose an emended description of the class to classify the class in the phylum .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.018069-0
2010-08-01
2024-09-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/8/1794.html?itemId=/content/journal/ijsem/10.1099/ijs.0.018069-0&mimeType=html&fmt=ahah

References

  1. Bhothipaksa K., Busta F. F. 1978; Osmotically induced increase in thermal resistance of heat-sensitive, dipicolinic acid-less spores of Bacillus cereus Ht-8. Appl Environ Microbiol 35:800–808
    [Google Scholar]
  2. Cavaletti L., Monciardini P., Bamonte R., Schumann P., Rohde M., Sosio M., Donadio S. 2006; New lineage of filamentous, spore-forming, gram-positive bacteria from soil. Appl Environ Microbiol 72:4360–4369 [CrossRef]
    [Google Scholar]
  3. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  4. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  5. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  6. Garrity G. M., Holt J. G. 2001; Phylum BVI. Chloroflexi phy. nov. In Bergey's Manual of Systematic Bacteriology , 2nd edn. vol 1p–427 Edited by Boone D. R., Castenholz R. W., Garrity G. M. New York: Springer;
    [Google Scholar]
  7. Guindon S., Gascuel O. 2003; A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704 [CrossRef]
    [Google Scholar]
  8. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  9. Harper J. J., Davis G. H. G. 1979; Two-dimensional thin-layer chromatography for amino acid analysis of bacterial cell walls. Int J Syst Bacteriol 29:56–58 [CrossRef]
    [Google Scholar]
  10. Hugenholtz P., Stackebrandt E. 2004 Reclassification of Sphaerobacter thermophilus from the subclass Sphaerobacteridae in the phylum Actinobacteria to the class Thermomicrobia (emended description) in the phylum Chloroflexi (emended description). Int J Syst Evol Microbiol 54, 2049–2051 [CrossRef]
  11. Janssen F. W., Lund A. J., Anderson L. F. 1958; Colorimetric assay for dipicolinic acid in bacterial spores. Science 127:26–27 [CrossRef]
    [Google Scholar]
  12. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  13. Lin Y.-C., Uemori K., de Briel D. A., Arunpairojana V., Yokota A. 2004 Zimmermannella helvola gen. nov., sp. nov., Zimmermannella alba sp. nov., Zimmermannella bifida sp. nov., Zimmermannella faecalis sp. nov. and Leucobacter albus sp. nov., novel members of the family Microbacteriaceae . Int J Syst Evol Microbiol 54, 1669–1676 [CrossRef]
  14. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  15. Morris R. M., Rappé M. S., Urbach E., Connon S. A., Giovannoni S. J. 2004; Prevalence of the Chloroflexi -related SAR202 bacterioplankton cluster throughout the mesopelagic zone and deep ocean. Appl Environ Microbiol 70:2836–2842 [CrossRef]
    [Google Scholar]
  16. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  17. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477
    [Google Scholar]
  18. Shirling E. B., Gottlieb D. 1966; Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340 [CrossRef]
    [Google Scholar]
  19. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology . pp 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
  20. Stamatakis A. 2006; RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690 [CrossRef]
    [Google Scholar]
  21. Stott M. B., Crowe M. A., Mountain B. W., Smirnova A. V., Hou S., Alam M., Dunfield P. F. 2008; Isolation of novel bacteria, including a candidate division, from geothermal soils in New Zealand. Environ Microbiol 10:2030–2041 [CrossRef]
    [Google Scholar]
  22. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  23. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef]
    [Google Scholar]
  24. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  25. Tindall B. J. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [CrossRef]
    [Google Scholar]
  26. Tindall B. J. 1990b; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [CrossRef]
    [Google Scholar]
  27. Yabe S., Kato A., Hazaka M., Yokota A. 2009; Thermaerobacter composti sp. nov., a novel extremely thermophilic bacterium isolated from compost. J Gen Appl Microbiol 55:323–328 [CrossRef]
    [Google Scholar]
  28. Yamada T., Sekiguchi Y., Hanada S., Imachi H., Ohashi A., Harada H., Kamagata Y. 2006; Anaerolinea thermolimosa sp. nov., Levilinea saccharolytica gen.nov., sp. nov. and Leptolinea tardivitalis gen. nov., sp. nov.,novel filamentous anaerobes, and description of the new classes Anaerolineae classis nov. and Caldilineae classis nov. in the bacterial phylum Chloroflexi . Int J Syst Evol Microbiol 56:1331–1340 [CrossRef]
    [Google Scholar]
  29. Yarza P., Richter M., Peplies J., Euzéby J., Amann R., Schleifer K. H., Ludwig W., Glöckner F. O., Rosselló-Móra R. 2008; The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31:241–250 [CrossRef]
    [Google Scholar]
  30. Yokota A., Tamura T., Nishii T., Hasegawa T. 1993; Kineococcus aurantiacus gen. nov., sp. nov., a new aerobic Gram-positive, motile coccus with meso -diaminopimelic acid and arabinogalactan in the cell wall. Int J Syst Bacteriol 4352–57 [CrossRef]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.018069-0
Loading
/content/journal/ijsem/10.1099/ijs.0.018069-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error