1887

Abstract

Two xylan-degrading bacteria, strains MX15-2 and MX21-2, were isolated from soils collected in Nan province, Thailand. Cells were Gram-reaction-positive, facultatively anaerobic, spore-forming and rod-shaped. They contained -diaminopimelic acid in the cell-wall peptidoglycan. The major menaquinone was MK-7. iso-C and anteiso-C were the predominant cellular fatty acids. Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and lysyl-phosphatidylglycerol were the major polar lipids. The genomic DNA G+C contents of strains MX15-2 and MX21-2 were 63.0 and 65.1 mol%, respectively. Phylogenetic analysis using 16S rRNA gene sequences showed that strains MX15-2 and MX21-2 were affiliated with the genus and were closely related to CCUG 47242, with 96.5 and 95.6 % sequence similarity, respectively. The strains could be clearly distinguished from each other and from all known species of the genus based on their physiological and biochemical characteristics as well as their phylogenetic positions and levels of DNA–DNA hybridization. Therefore, these two strains represent novel species of the genus , for which the names sp. nov. (type strain MX15-2 =KCTC 22294 =PCU 309 =TISTR 1891) and sp. nov. (type strain MX21-2 =KCTC 22295 =PCU 310 =TISTR 1892) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.017855-0
2010-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/12/2913.html?itemId=/content/journal/ijsem/10.1099/ijs.0.017855-0&mimeType=html&fmt=ahah

References

  1. Barrow G. I., Feltham R. K. A. 1993 Cowan and Steel's Manual for the Identification of Medical Bacteria, 3rd edn. Cambridge: Cambridge University Press;
    [Google Scholar]
  2. Cai F., Wang Y., Qi H., Dai J., Yu B., An H., Rahman E., Fang C. 2010; Cohnella luojiensis sp. nov., isolated from soil of a Euphrates poplar forest. Int J Syst Evol Microbiol 60:1605–1608 [CrossRef]
    [Google Scholar]
  3. Cho E. A., Lee J.-S., Lee K. C., Jung H. C., Pan J. G., Pyun Y. R. 2007; Cohnella laeviribosi sp. nov., isolated from a volcanic pond. Int J Syst Evol Microbiol 57:2902–2907 [CrossRef]
    [Google Scholar]
  4. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  5. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  6. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  7. Forbes L. 1981; Rapid flagella stain. J Clin Microbiol 13:807–809
    [Google Scholar]
  8. García-Fraile P., Velázquez E., Mateos P. F., Martínez-Molina E., Rivas R. 2008; Cohnella phaseoli sp. nov., isolated from root nodules of Phaseolus coccineus in Spain, and emended description of the genus Cohnella . Int J Syst Evol Microbiol 58:1855–1859 [CrossRef]
    [Google Scholar]
  9. Kämpfer P., Rosselló-Mora R, Falsen E., Busse H.-J., Tindall B. J. 2006; Cohnella thermotolerans gen. nov., sp. nov., and classification of ‘ Paenibacillus hongkongensis ’ as Cohnella hongkongensis sp. nov. Int J Syst Evol Microbiol 56:781–786 [CrossRef]
    [Google Scholar]
  10. Khianngam S., Tanasupawat S., Akaracharanya A., Kim K. K., Lee K. C., Lee J.-S. 2010; Cohnella thailandensis sp. nov., a xylanolytic bacterium from Thai soil. Int J Syst Evol Microbiol 60:2284–2287 [CrossRef]
    [Google Scholar]
  11. Kim S.-J., Weon H.-Y., Kim Y.-S., Anandham R., Jeon Y.-A., Hong S.-B., Kwon S.-W. 2010; Cohnella yongneupensis sp. nov. and Cohnella ginsengisoli sp. nov., isolated from two different soils. Int J Syst Evol Microbiol 60:526–530 [CrossRef]
    [Google Scholar]
  12. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207
    [Google Scholar]
  13. Minnikin D. E., Patel P. V., Alshamaony L., Goodfellow M. 1977; Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 27:104–117 [CrossRef]
    [Google Scholar]
  14. Ruijssenaars H. J., Hartsmans S. 2001; Plate screening methods for the detection of polysaccharase-producing microorganisms. Appl Microbiol Biotechnol 55:143–149 [CrossRef]
    [Google Scholar]
  15. Saito H., Miura K. 1963; Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72:619–629 [CrossRef]
    [Google Scholar]
  16. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  17. Sasser M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids , MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  18. Shida O., Takagi H., Kadowaki K., Nakamura L. K., Komagata K. 1997; Transfer of Bacillus alginolyticus , Bacillus chondroitinus , Bacillus curdlanolyticus , Bacillus glucanolyticus , Bacillus kobensis , and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus . Int J Syst Bacteriol 47:289–298 [CrossRef]
    [Google Scholar]
  19. Shiratori H., Tagami Y., Beppu T., Ueda K. 2010; Cohnella fontinalis sp. nov., a xylanolytic bacterium isolated from fresh water. Int J Syst Evol Microbiol 60:1344–1348 [CrossRef]
    [Google Scholar]
  20. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  21. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega 4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef]
    [Google Scholar]
  22. Tanasupawat S., Thawai C., Yukphan P., Moonmangmee D., Itoh T., Adachi O., Yamada Y. 2004; Gluconobacter thailandicus sp. nov., an acetic acid bacterium in the α -proteobacteria. J Gen Appl Microbiol 50:159–167 [CrossRef]
    [Google Scholar]
  23. Teather R. M., Wood P. J. 1982; Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 43:777–780
    [Google Scholar]
  24. Teng J. L. L., Woo P. C. Y., Leung K. W., Lau S. K. P., Wong M. K. M., Yuen K. Y. 2003; Pseudobacteraemia in a patient with neutropenic fever caused by a novel paenibacillus species: Paenibacillus hongkongensis sp. nov. Mol Pathol 56:29–35 [CrossRef]
    [Google Scholar]
  25. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.017855-0
Loading
/content/journal/ijsem/10.1099/ijs.0.017855-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Supplementary material 4

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error