1887

Abstract

The thermophilic, cellulolytic, anaerobic bacterium ‘’ strain Z-1320 was isolated from a hot spring almost two decades ago and deposited in the German Collection of Microorganisms and Cell Cultures (DSMZ) as DSM 6725. The organism was classified as representing a new genus, ‘’, primarily on its growth physiology, cell-wall type and morphology. The results of recent physiological studies and of phylogenetic and genome sequence analyses of strain DSM 6725 of ‘’ obtained from the DSMZ showed that its properties differed from those originally described for strain Z-1320. In particular, when compared with strain Z-1320, strain DSM 6725 grew at higher temperatures and had an expanded range of growth substrates. Moreover, the 16S rRNA gene sequence of strain DSM 6725 fell within the clade. It is therefore suggested that ‘’ should be classified as a member of the genus , for which the name sp. nov. is proposed (type strain DSM 6725=ATCC BAA-1888). sp. nov. DSM 6725 is the most thermophilic cellulose-degrading organism known. The strain was able to grow up to 90 °C (pH 7.2) and degraded crystalline cellulose and xylan as well as untreated plant biomass, including potential bioenergy plants such as poplar and switchgrass.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.017731-0
2010-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/9/2011.html?itemId=/content/journal/ijsem/10.1099/ijs.0.017731-0&mimeType=html&fmt=ahah

References

  1. Bredholt S., Sonne-Hansen J., Nielsen P., Mathrani I. M., Ahring B. K. 1999; Caldicellulosiruptor kristjanssonii sp. nov., a cellulolytic, extremely thermophilic, anaerobic bacterium. Int J Syst Bacteriol 49:991–996 [CrossRef]
    [Google Scholar]
  2. Dwivedi P. P., Gibbs M. D., Saul D. J., Bergquist P. L. 1996; Cloning, sequencing and overexpression in Escherichia coli of a xylanase gene, xynA from the thermophilic bacterium Rt8B.4 genus Caldicellulosiruptor . Appl Microbiol Biotechnol 45:86–93 [CrossRef]
    [Google Scholar]
  3. Huang C.-Y., Patel B. K., Mah R. A., Baresi L. 1998; Caldicellulosiruptor owensensis sp. nov., an anaerobic, extremely thermophilic, xylanolytic bacterium. Int J Syst Bacteriol 48:91–97 [CrossRef]
    [Google Scholar]
  4. Kataeva I. A., Yang S. J., Dam P., Poole F. L., II, Yin Y., Zhou F., Chou W. C., Xu Y., Goodwin L. other authors 2009; Genome sequence of the anaerobic, thermophilic and cellulolytic bacterium “ Anaerocellum thermophilum ” DSM 6725. J Bacteriol 191:3760–3761 [CrossRef]
    [Google Scholar]
  5. Miroshnichenko M. L., Kublanov I. V., Kostrikina N. A., Tourova T. P., Kolganova T. V., Birkeland N. K., Bonch-Osmolovskaya E. A. 2008; Caldicellulosiruptor kronotskyensis sp. nov. and Caldicellulosiruptor hydrothermalis sp. nov., two extremely thermophilic, cellulolytic, anaerobic bacteria from Kamchatka thermal springs. Int J Syst Evol Microbiol 58:1492–1496 [CrossRef]
    [Google Scholar]
  6. Mladenovska Z., Mathrani I. M., Ahring B. K. 1995; Isolation and characterization of Caldicellulosiruptor lactoaceticus sp. nov., an extremely thermophilic, cellulolytic, anaerobic bacterium. Arch Microbiol 163:223–230 [CrossRef]
    [Google Scholar]
  7. Onyenwoke R. U., Lee Y.-J., Dabrowski S., Ahring B. K., Wiegel J. 2006; Reclassification of Thermoanaerobium acetigenum as Caldicellulosiruptor acetigenus comb. nov. and emendation of the genus description. Int J Syst Evol Microbiol 56:1391–1395 [CrossRef]
    [Google Scholar]
  8. Rainey F. A., Donnison A. M., Janssen P. H., Saul D., Rodrigo A., Berquist P. L., Daniel R. M., Stackebrandt E., Morgan H. W. 1994; Description of Caldicellulosiruptor saccharolyticus gen. nov., sp. nov.: an obligately anaerobic, extremely thermophilic, cellulolytic bacterium. FEMS Microbiol Lett 120:263–266 [CrossRef]
    [Google Scholar]
  9. Svetlichnyi V. A., Svetlichnaya T. P., Chernykh N. A., Zavarzin G. A. 1990; Anaerocellum thermophilum gen. nov., sp. nov., an extremely thermophilic cellulolytic eubacterium isolated from hot-springs in the valley of Geysers. Microbiology 59:598–604
    [Google Scholar]
  10. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: Molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef]
    [Google Scholar]
  11. van de Werken H. J., Verhaart M. R., VanFossen A. L., Willquist K., Lewis D. L., Nichols J. D., Goorissen H. P., Mongodin E. F., Nelson K. E. other authors 2008; Hydrogenomics of the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus . Appl Environ Microbiol 74:6720–6729 [CrossRef]
    [Google Scholar]
  12. Yang S.-J., Kataeva I., Hamilton-Brehm S. D., Engle N. E., Tschaplinski T. J., Doeppke C., Davis M., Westpheling J., Adams M. W. 2009; Efficient degradation of lignocellulosic plant biomass, without pretreatment, by the thermophilic anaerobe, “ Anaerocellum thermophilum” DSM 6725. Appl Environ Microbiol 75:4762–4769 [CrossRef]
    [Google Scholar]
  13. Zverlov V., Mahr S., Riedel K., Bronnenmeier K. 1998; Properties and gene structure of a bifunctional cellulolytic enzyme (CelA) from the extreme thermophile ‘ Anaerocellum thermophilum ’ with separate glycosyl hydrolase family 9 and 48 catalytic domains. Microbiology 144:457–465 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.017731-0
Loading
/content/journal/ijsem/10.1099/ijs.0.017731-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error