sp. nov., a UV radiation-resistant bacterium isolated from soil Free

Abstract

Strain GIMN 1.002, a UV radiation-tolerant bacterium, was isolated from the upper sand layers of the Gobi desert, Xinjiang, China and characterized in order to determine its taxonomic position. Cells were Gram-reaction-positive, heterotrophic, strictly aerobic, short rods. 16S rRNA gene sequence analysis revealed that strain GIMN 1.002 belonged to the genus and was closely related to DSM 20754 (98.8 % 16S rRNA gene sequence similarity) and DSM 20530 (98.7 %). However, strain GIMN 1.002 had low DNA–DNA relatedness with DSM 20754 (17.1 %) and DSM 20530 (12.89 %). Strain GIMN 1.002 possessed chemotaxonomic markers that were consistent with its classification in the genus , i.e. MK-11, MK-12 and MK-10 as major menaquinones and anteiso-C (38.67 %), iso-C (18.16 %) and iso-C (17.46 %) as predominant cellular fatty acids. The DNA G+C content was 67.74 mol%. The cell-wall sugar was rhamnose. On the basis of the data from this study, strain GIMN 1.002 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is GIMN 1.002 (=CCTCC M208212 =NRRL B-24799).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.017400-0
2010-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/11/2665.html?itemId=/content/journal/ijsem/10.1099/ijs.0.017400-0&mimeType=html&fmt=ahah

References

  1. Behrendt U., Ulrich A., Schumann P. 2001; Description of Microbacterium foliorum sp. nov. and Microbacterium phyllosphaerae sp. nov., isolated from the phyllosphere of grasses and the surface litter after mulching the sward, and reclassification of Aureobacterium resistens (Funke et al. 1998) as Microbacterium resistens comb. nov. Int J Syst Evol Microbiol 51:1267–1276
    [Google Scholar]
  2. Bousfield I. J., Keddie R. M., Dando T. R., Shaw S. 1985; Simple rapid methods of cell wall analysis as an aid in the identification of aerobic coryneform bacteria. In Chemical Methods in Bacterial Systematics pp 221–236 Edited by Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  3. Buck J. D. 1982; Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993
    [Google Scholar]
  4. Collins M. D., Jones D., Kroppenstedt R. M. 1983; Reclassification of Brevibacterium imperiale (Steinhaus) and ‘ Corynebacterium laevaniformans ’ (Dias and Bhat) in a redefined genus Microbacterium (Orla-Jensen), as Microbacterium imperiale comb.nov. and Microbacterium laevaniformans nom. rev.; comb. nov. Syst Appl Microbiol 4:65–78 [CrossRef]
    [Google Scholar]
  5. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  6. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  7. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  8. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  9. Hiraishi A., Ueda Y., Ishihara J., Mori T. 1996; Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42:457–469 [CrossRef]
    [Google Scholar]
  10. Imai K., Takeuchi M., Banno I. 1984; Reclassification of ‘ Flavobacterium arborescens ’ (Frankland and Frankland) Bergey et al. in the genus Microbacterium (Orla-Jensen) Collins et al., as Microbacterium arborescens comb. nov., nom. rev. Curr Microbiol 11:281–284 [CrossRef]
    [Google Scholar]
  11. Kageyama A., Takahashi Y., Matsuo Y., Kasai H., Shizuri Y., Omura S. 2007; Microbacterium sediminicola sp. nov. and Microbacterium marinilacus sp. nov., isolated from marine environments. Int J Syst Bacteriol 57:2355–2359 [CrossRef]
    [Google Scholar]
  12. Kim M. K., Im W.-T., Ohta H., Lee M., Lee S.-T. 2005; Sphingopyxis granuli sp. nov., a beta-glucosidase-producing bacterium in the family Sphingomonadaceae in alpha-4 subclass of the Proteobacteria. J Microbiol 43:152–157
    [Google Scholar]
  13. Kimura M. 1983 The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press;
    [Google Scholar]
  14. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207
    [Google Scholar]
  15. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  16. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  17. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [CrossRef]
    [Google Scholar]
  18. Moore D. D., Dowhan D. 1995; Preparation and analysis of DNA. In Current Protocols in Molecular Biology pp 2–11 Edited by Ausubel F. W., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. New York: Wiley;
    [Google Scholar]
  19. Orla-Jensen S. 1919 The Lactic Acid Bacteria Copenhagen: Høst & Sons;
    [Google Scholar]
  20. Park M. J., Kim M. K., Kim H. B., Im W. T., Yi T. H., Kim S. Y., Soung N. K., Yang D. C. 2008; Microbacterium ginsengisoli sp. nov., a β -glucosidase-producing bacterium isolated from soil of a ginseng field. Int J Syst Evol Microbiol 58:429–433 [CrossRef]
    [Google Scholar]
  21. Rivas R., Trujillo M. E., Sánchez M., Mateos P. F., Martínez-Molina E., Velázquez E. 2004; Microbacterium ulmi sp. nov., a xylanolytic, phosphate-solubilizing bacterium isolated from sawdust of Ulmus nigra . Int J Syst Evol Microbiol 54:513–517 [CrossRef]
    [Google Scholar]
  22. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  23. Sasser M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids , MIDI Technical Note 101 Newark, DE: MIDI, Inc;
    [Google Scholar]
  24. Schumann P., Rainey F. A., Burghardt J., Stackebrandt E., Weiss N. 1999; Reclassification of Brevibacterium oxydans (Chatelain and Second 1966) as Microbacterium oxydans comb. nov. Int J Syst Bacteriol 49:175–177 [CrossRef]
    [Google Scholar]
  25. Skerman V. B. D. 1967 A Guide to the Identification of the Genera of Bacteria, 2nd edn. Baltimore: Williams & Wilkins;
    [Google Scholar]
  26. Smibert R. M., Krieg N. R. 1981; General characterization. In Manual of Methods for General Bacteriology p 409–425 Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  27. Sneath P. H. A., Mair N. S., Sharpe M. E. Holt J. G. (editors) 1986 Bergey's Manual of Systematic Bacteriology vol 2 Baltimore: Williams & Wilkins;
    [Google Scholar]
  28. Staneck J. L., Roberts G. D. 1974; Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231
    [Google Scholar]
  29. Takeuchi M., Hatano K. 1998a; Proposal of six new species in the genus Microbacterium and transfer of Flavobacterium marinotypicum ZoBell and Upham to the genus Microbacterium as Microbacterium maritypicum comb. nov. Int J Syst Bacteriol 48:973–982 [CrossRef]
    [Google Scholar]
  30. Takeuchi M., Hatano K. 1998b; Union of the genera Microbacterium Orla-Jensen and Aureobacterium Collins et al. in a redefined genus Microbacterium . Int J Syst Bacteriol 48:739–747 [CrossRef]
    [Google Scholar]
  31. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  32. Uchida K., Seino A. 1997; Intra- and intergeneric relationships of various actinomycete strains based on the acyl types of the muramyl residue in cell wall peptidoglycans examined in a glycolate test. Int J Syst Bacteriol 47:182–190 [CrossRef]
    [Google Scholar]
  33. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.017400-0
Loading
/content/journal/ijsem/10.1099/ijs.0.017400-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed