1887

Abstract

A novel bacterium, designated strain OX-01, was isolated from acidic soil, taxonomically investigated and identified as an agent that catabolizes (+)-catechin into taxifolin. Strain OX-01 is a Gram-reaction-negative, aerobic, non-sporulating, non-motile and rod-shaped bacterium. 16S rRNA gene sequence analysis identified this strain as a member of the genus and occupying a phylogenetic position closest to, but clearly distinct from, . Strain OX-01 does not have any genes, which are required for N-fixation, in its genome, a feature that is similar to , which lacks , but is distinct from the N-fixing features of many other phylogenetically related taxa, such as , , , , , and . Strain OX-01 has the following chemotaxonomic characteristics: the major ubiquinone is Q-8, the DNA G+C content is 64 mol% and the major fatty acids are C, C cyclo and C 7. It also has a unique profile of carbohydrate utilization among other species of the genus . The strain cannot assimilate many pentoses, hexoses and oligosaccharides, whereas it can catabolize (+)-catechin and its putative aromatic derivatives, such as 4-hydroxy-3-methoxycinnamic acid, protocatechuic acid, -hydroxybenzoic acid, --coumaric acid and vanillic acid. Based on its morphological, physiological and chemotaxonomic characteristics, together with DNA–DNA relatedness values and 16S rRNA gene sequence comparison data, we show that strain OX-O1 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is OX-01 (=NBRC 105797 =DSM 22550).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.017368-0
2011-02-01
2019-12-05
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/2/249.html?itemId=/content/journal/ijsem/10.1099/ijs.0.017368-0&mimeType=html&fmt=ahah

References

  1. Aizawa, T., Ve, N. B., Nakajima, M. & Sunairi, M. ( 2010; ). Burkholderia heleia sp. nov., a nitrogen-fixing bacterium isolated from an aquatic plant, Eleocharis dulcis, that grows in highly acidic swamps in actual acid sulfate soil areas of Vietnam. Int J Syst Evol Microbiol 60, 1152–1157.[CrossRef]
    [Google Scholar]
  2. Aspray, T. J., Frey-Klett, P., Jones, J. E., Whipps, J. M., Barbaye, J. & Bending, G. D. ( 2006; ). Mycorrhization helper bacteria: a case of specificity for altering ectomycorrhiza architecture but not ectomycorrhiza formation. Mycorrhiza 16, 533–541.[CrossRef]
    [Google Scholar]
  3. Brämer, C. O., Vandamme, P., da Silva, L. F., Gomez, J. G. C. & Steinbuchel, A. ( 2001; ). Burkholderia sacchari sp. nov., a polyhydroxyalkanoate-accumulating bacterium isolated from soil of a sugar-cane plantation in Brazil. Int J Syst Evol Microbiol 51, 1709–1713.[CrossRef]
    [Google Scholar]
  4. Caballero-Mellado, J., Martínez-Aguilar, L., Paredes-Valdez, G. & Estrada-de los Santos, P. ( 2004; ). Burkholderia unamae sp. nov., an N2-fixing rhizospheric and endophytic species. Int J Syst Evol Microbiol 54, 1165–1172.[CrossRef]
    [Google Scholar]
  5. Chen, W.-M., James, E. K., Coenye, T., Chou, J.-H., Barrios, E., de Faria, S. M., Elliott, G. N., Sheu, S.-Y., Sprent, J. I. & Vandamme, P. ( 2006; ). Burkholderia mimosarum sp. nov., isolated from root nodules of Mimosa spp. from Taiwan and South America. Int J Syst Evol Microbiol 56, 1847–1851.[CrossRef]
    [Google Scholar]
  6. Chen, W.-M., de Faria, S. M., James, E. K., Elliott, G. N., Lin, K.-Y., Chou, J.-H., Sheu, S.-Y., Cnockaert, M., Sprent, J. I. & Vandamme, P. ( 2007; ). Burkholderia nodosa sp. nov., isolated from root nodules of the woody Brazilian legumes Mimosa bimucronata and Mimosa scabrella. Int J Syst Evol Microbiol 57, 1055–1059.[CrossRef]
    [Google Scholar]
  7. Coenye, T. & Vandamme, P. ( 2003; ). Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ Microbiol 5, 719–729.[CrossRef]
    [Google Scholar]
  8. Estrada-de los Santos, P., Bustillos-Cristales, R. & Caballero-Mellado, J. ( 2001; ). Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution. Appl Environ Microbiol 67, 2790–2798.[CrossRef]
    [Google Scholar]
  9. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  10. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  11. Gutell, R. R., Larsen, N. & Woese, C. R. ( 1994; ). Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. Microbiol Rev 58, 10–26.
    [Google Scholar]
  12. Izumi, H., Anderson, I. C., Alexander, I. J., Killham, K. & Moore, E. R. ( 2006; ). Endobacteria in some ectomycorrhiza of Scots pine (Pinus sylvestris). FEMS Microbiol Ecol 56, 34–43.[CrossRef]
    [Google Scholar]
  13. Johnston, J. L. ( 1994; ). Similarity analysis of rRNAs. In Methods for General and Molecular Bacteriology, pp. 683–700. Edited by Gerhardt, P., Murray, R. G. E. & Wood, W. A.. Washington, DC. : American Society for Microbiology.
    [Google Scholar]
  14. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  15. Lehning, A., Fock, U., Wittich, R.-M., Timmis, K. N. & Pieper, D. H. ( 1997; ). Metabolism of chlorotoluenes by Burkholderia sp. strain PS12 and toluene dioxygenase of Pseudomonas putida F1: evidence for monooxygenation by toluene and chlorobenzene dioxygenases. Appl Environ Microbiol 63, 1974–1979.
    [Google Scholar]
  16. Levy, A., Chang, B. J., Abbott, L. K., Kuo, J., Harnett, G. & Inglis, T. J. J. ( 2003; ). Invasion of spores of the arbuscular mycorrhizal fungus Gigaspora decipiens by Burkholderia spp. Appl Environ Microbiol 69, 6250–6256.[CrossRef]
    [Google Scholar]
  17. Lim, Y. W., Baik, K. S., Han, S. K., Kim, S. B. & Bae, K. S. ( 2003; ). Burkholderia sordidicola sp. nov., isolated from the white-rot fungus Phanerochaete sordida. Int J Syst Evol Microbiol 53, 1631–1636.[CrossRef]
    [Google Scholar]
  18. Martínez-Aguilar, L., Díaz, R., Peña-Cabriales, J. J., Estrada-de los Santos, P., Dunn, M. F. & Caballero-Mellado, J. ( 2008; ). Multichromosomal genome structure and confirmation of diazotrophy in novel plant-associated Burkholderia species. Appl Environ Microbiol 74, 4574–4579.[CrossRef]
    [Google Scholar]
  19. Miller, J. H. ( 1972; ). Experiments in Molecular Genetics. Cold Spring Harbor, NY. : Cold Spring Harbor Laboratory.
    [Google Scholar]
  20. Minerdi, D., Fani, R., Gallo, R., Boarino, A. & Bonfante, P. ( 2001; ). Nitrogen fixation genes in an endosybiotic Burkholderia strain. Appl Environ Microbiol 67, 725–732.[CrossRef]
    [Google Scholar]
  21. Nishijima, M., Araki-Sakai, M. & Sano, H. ( 1997; ). Identification of isoprenoid quinones by frit-FAB liquid chromatography–mass spectrometry for the chemotaxonomy of microorganisms. J Microbiol Methods 28, 113–122.[CrossRef]
    [Google Scholar]
  22. Otsuka, Y., Nakamura, M., Shigehara, K., Sugimura, K., Masai, E., Ohara, S. & Katayama, Y. ( 2006; ). Efficient production of 2-pyrone 4,6-dicarboxylic acid as a novel polymer-based material from protocatechuate by microbial function. Appl Microbiol Biotechnol 71, 608–614.[CrossRef]
    [Google Scholar]
  23. Perin, L., Martínez-Aguilar, L., Paredes-Valdez, G., Baldani, J. I., Estrada-de los Santos, P., Reis, V. M. & Caballero-Mellado, J. ( 2006; ). Burkholderia silvatlantica sp. nov., a diazotrophic bacterium associated with sugar cane and maize. Int J Syst Evol Microbiol 56, 1931–1937.[CrossRef]
    [Google Scholar]
  24. Reis, V. M., Estrada-de los Santos, P., Tenorio-Salgado, S., Vogel, J., Stoffels, M., Guyon, S., Mavingui, P., Baldani, V. L. D., Schmid, M. & other authors ( 2004; ). Burkholderia tropica sp. nov., a novel nitrogen-fixing, plant-associated bacterium. Int J Syst Evol Microbiol 54, 2155–2162.[CrossRef]
    [Google Scholar]
  25. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  26. Seigle-Murandi, F., Guiraud, P., Croizê, J., Falsen, E. & Eriksson, K.-E. L. ( 1996; ). Bacteria are omnipresent on Phanerochaete chrysosporium Burdsall. Appl Environ Microbiol 62, 2477–2481.
    [Google Scholar]
  27. Staskawicz, B. J., Dahlbeck, D. & Keen, N. T. ( 1984; ). Cloned avirulence gene of Pseudomonas syringae pv. glycinea determines race-specific incompatibility on Glycine max (L.) Merr. Proc Natl Acad Sci U S A 81, 6024–6028.[CrossRef]
    [Google Scholar]
  28. Takagi, H., Shida, O., Kadowaki, K., Komagata, K. & Udaka, S. ( 1993; ). Characterization of Bacillus brevis with descriptions of Bacillus migulanus sp. nov., Bacillus choshinensis sp. nov., Bacillus parabrevis sp. nov., and Bacillus galactophilus sp. nov. Int J Syst Bacteriol 43, 221–231.[CrossRef]
    [Google Scholar]
  29. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  30. Valverde, A., Delvasto, P., Peix, A., Velázquez, E., Santa-Regina, I., Ballester, A., Rodríguez-Barrueco, C., García-Balboa, C. & Igual, J. M. ( 2006; ). Burkholderia ferrariae sp. nov., isolated from an iron ore in Brazil. Int J Syst Evol Microbiol 56, 2421–2425.[CrossRef]
    [Google Scholar]
  31. Vandamme, P., Govan, J. R. W. & LiPuma, J. J. ( 2007; ). Diversity and role of Burkholderia spp. In Burkholderia: Molecular Microbiology and Genomics, pp. 1–28. Edited by Coenye, T. & Vandamme, P.. Wymondham, UK. : Horizon Bioscience.
    [Google Scholar]
  32. Yano, K. & Nishi, T. ( 1980; ). pKJ, a naturally occurring conjugative plasmid coding for toluene degradation and resistance to streptomycin and sulfonamides. J Bacteriol 143, 552–560.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.017368-0
Loading
/content/journal/ijsem/10.1099/ijs.0.017368-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error