1887

Abstract

An aerobic, Gram-reaction-positive, non-motile, psychrophilic bacterium, designated strain S6-3, was isolated from alpine soil. Cells exhibited a rod–coccus growth cycle and produced a yellow pigment. Growth occurred at 1–25 °C. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain S6-3 was related to members of the genus , sharing highest sequence similarities with the type strains of (97.9 %) and (97.6 %). Strain S6-3 had MK-9(H) as the major menaquinone and anteiso-C as the major fatty acid. The cell-wall peptidoglycan was of type A3 -Lys–-Thr–Ala. The predominant cell-wall sugars were galactose and rhamnose. The genomic DNA G+C content of strain S6-3 was 61.9 mol%. On the basis of phenotypic characteristics, phylogenetic analysis and DNA–DNA relatedness data, strain S6-3 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is S6-3 (=DSM 22274 =CGMCC 1.8950).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.017178-0
2010-09-01
2024-11-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/9/2149.html?itemId=/content/journal/ijsem/10.1099/ijs.0.017178-0&mimeType=html&fmt=ahah

References

  1. Backman A., Jansson J. 2004; Degradation of 4-chlorophenol at low temperature and during extreme temperature fluctuations by Arthrobacter chlorophenolicus A6. Microb Ecol 48:246–253 [CrossRef]
    [Google Scholar]
  2. Cavicchioli R. 2006; Cold-adapted archaea. Nature Rev Microbiol 4:331–343 [CrossRef]
    [Google Scholar]
  3. Collins M. D. 1985; Isoprenoid quinone analysis in classification and identification. In Chemical Methods in Bacterial Systematics pp 267–287 Edited by Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  4. Collins M. D., Jones D. 1981; Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45:316–354
    [Google Scholar]
  5. Collins M. D., Kroppenstedt R. M. 1983; Lipid composition as a guide to the classification of some coryneform bacteria containing an A4 type peptidoglycan (Schleifer and Kandler). Syst Appl Microbiol 4:95–104 [CrossRef]
    [Google Scholar]
  6. Conn H. J., Dimmick I. 1947; Soil bacteria similar in morphology to Mycobacterium and Corynebacterium . J Bacteriol 54:291–303
    [Google Scholar]
  7. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  8. Feller G., Gerday C. 2003; Psychrophilic enzymes: hot topics in cold adaptation. Nature Rev Microbiol 1:200–208 [CrossRef]
    [Google Scholar]
  9. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  10. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  11. Keddie R. M., Collins M. D., Jones D. 1986; Genus Arthrobacter Conn and Dimmick 1947, 300AL . In Bergey's Manual of Systematic Bacteriology vol 2 pp 1288–1301 Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  12. Koch C., Schumann P., Stackebrandt E. 1995; Reclassification of Micrococcus agilis (Ali-Cohen 1889) to the genus Arthrobacter as Arthrobacter agilis comb. nov. and emendation of the genus Arthrobacter . Int J Syst Bacteriol 45:837–839 [CrossRef]
    [Google Scholar]
  13. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  14. Li Y., Kawamura Y., Fujiwara N., Naka T., Liu H., Huang X., Kobayashi K., Ezaki T. 2004 Rothia aeria sp. nov., Rhodococcus baikonurensis sp. nov. and Arthrobacter russicus sp. nov., isolated from air in the Russian space laboratory Mir. Int J Syst Evol Microbiol 54, 827–835 [CrossRef]
  15. Loveland-Curtze J., Sheridan P. P., Gutshall K. R., Brenchley J. E. 1999; Biochemical and phylogenetic analyses of psychrophilic isolates belonging to the Arthrobacter subgroup and description of Arthrobacter psychrolactophilus sp. nov. Arch Microbiol 171:355–363 [CrossRef]
    [Google Scholar]
  16. MacKenzie S. L. 1987; Gas chromatographic analysis of amino acids as the N -heptafluorobutyryl isobutyl esters. J Assoc Off Anal Chem 70:151–160
    [Google Scholar]
  17. Margesin R., Zacke G., Schinner F. 2002; Characterization of heterotrophic microorganisms in alpine glacier cryoconite. Arct Antarct Alp Res 34:88–93 [CrossRef]
    [Google Scholar]
  18. Margesin R., Bergauer B., Gander S. 2004a; Degradation of phenol and toxicity of phenolic compounds: a comparison of cold-tolerant Arthrobacter sp. and mesophilic Pseudomonas putida . Extremophiles 8:201–207 [CrossRef]
    [Google Scholar]
  19. Margesin R., Schumann P., Spröer C., Gounot A. M. 2004b; Arthrobacter psychrophenolicus sp. nov., isolated from an alpine ice cave. Int J Syst Evol Microbiol 54:2067–2072 [CrossRef]
    [Google Scholar]
  20. Margesin R., Schinner F., Marx J. C., Gerday C. 2008 Psychrophiles: from Biodiversity to Biotechnology Berlin: Springer;
    [Google Scholar]
  21. Margesin R., Jud M., Tscherko D., Schinner F. 2009; Microbial communities and activities in alpine and subalpine soils. FEMS Microbiol Ecol 67:208–218 [CrossRef]
    [Google Scholar]
  22. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  23. Minnikin D. E., Goodfellow M., Collins M. D. 1978; Coryneform bacteria. In Lipid Composition in the Classification and Identification of Coryneform and Related Taxa pp 85–160 Edited by Bousfield I. J., Callely A. G. London: Academic Press;
    [Google Scholar]
  24. Morita R. Y. 1975; Psychrophilic bacteria. Bacteriol Rev 39:144–167
    [Google Scholar]
  25. Reasoner D. J., Geldreich E. E. 1985; A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7
    [Google Scholar]
  26. Reddy G. S. N., Aggarwal R. K., Matsumoto G. I., Stackebrandt E., Shivaji S. 2000; Arthrobacter flavus sp. nov., a psychrophilic bacterium isolated from a pond in McMurdo Dry Valley, Antarctica. Int J Syst Evol Microbiol 50:1553–1561 [CrossRef]
    [Google Scholar]
  27. Reddy G. S. N., Prakash J. S. S., Matsumoto G. I., Stackebrandt E., Shivaji S. 2002; Arthrobacter roseus sp. nov., a psychrophilic bacterium isolated from an Antarctic cyanobacterial mat sample. Int J Syst Evol Microbiol 52:1017–1021 [CrossRef]
    [Google Scholar]
  28. Sambrook J., Frisch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  29. Sasser M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids , MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  30. Schleifer K. H. 1985; Analysis of the chemical composition and primary structure of murein. Methods Microbiol 18:123–156
    [Google Scholar]
  31. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477
    [Google Scholar]
  32. Stackebrandt E., Schumann P. 2006; Introduction to the taxonomy of actinobacteria. In The Prokaryotes. A Handbook on the Biology of Bacteria 3rd edn, vol. 3 pp 297–321 Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E. New York: Springer;
    [Google Scholar]
  33. Stackebrandt E., Fowler V. J., Fiedler F., Seiler H. 1983 Taxonomic studies on Arthrobacter nicotianae and related taxa: description of Arthrobacter uratoxydans sp.nov. and Arthrobacter sulfureus sp. nov. and reclassification of Brevibacterium protophormiae as Arthrobacter protophormiae comb. nov. Syst Appl Microbiol 4, 470–486 [CrossRef]
  34. Staneck J. L., Roberts G. D. 1974; Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231
    [Google Scholar]
  35. Tvrzová L., Schumann P., Spröer C., Sedláček I., Verbarg S., Kroppenstedt R. M., Páčová Z. 2005; Polyphasic taxonomic study of strain CCM 2783 resulting in the description of Arthrobacter stackebrandtii sp. nov. Int J Syst Evol Microbiol 55:805–808 [CrossRef]
    [Google Scholar]
  36. Westerberg K., Elväng A. M., Stackebrandt E., Jansson J. K. 2000; Arthrobacter chlorophenolicus sp. nov., a new species capable of degrading high concentrations of 4-chlorophenol. Int J Syst Evol Microbiol 50:2083–2092 [CrossRef]
    [Google Scholar]
  37. Whiton R. S., Lau P., Morgan S. L., Gilbart J., Fox A. 1985; Modifications in the alditol acetate method for analysis of muramic acid and other neutral and amino sugars by capillary gas chromatography-mass spectrometry with selected ion monitoring. J Chromatogr A 347:109–120 [CrossRef]
    [Google Scholar]
  38. Wu C., Lu X., Qin M., Wang Y., Ruan J. 1989 Analysis of menaquinone compound in microbial cells by HPLC. Microbiology [English translation of Microbiology (Beijing) ] 16176–178
  39. Zhang D.-C., Wang H.-X., Liu H.-C., Dong X.-Z., Zhou P.-J. 2006; Flavobacterium glaciei sp. nov., a novel psychrophilic bacterium isolated from the China No.1 glacier. Int J Syst Evol Microbiol 56:2921–2925 [CrossRef]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.017178-0
Loading
/content/journal/ijsem/10.1099/ijs.0.017178-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error