1887

Abstract

Strains JC15 and JC19 were isolated from samples collected from different locations in India, including a coal mine and a marine lagoon. Both strains were Gram-stain-negative rods, motile by means of a single polar flagellum, catalase- and oxidase-positive, and hydrolysed casein, produced HS and showed -haemolysis. Strain JC15 grew optimally at pH 6 (range pH 5–8) while strain JC19 grew optimally at pH 7 (range pH 6-9) and both had a growth temperature optimum of 30–37 °C (range 22–40 °C). Both strains could grow chemo-organoheterotrophically and chemolithoautotrophically. Neither strain required NaCl for growth and both could tolerate up to 9 % (w/v) NaCl, with optimum growth at 5 % NaCl. Vitamin B was required as a growth factor by both strains. The major fatty acids were iso-C, C 8 and iso-C 3-OH. The DNA GC contents of strains JC15 and JC19 were 53.6 and 54.3 mol%, respectively. A phylogenetic tree based on 16S rRNA gene sequence analysis showed that strains JC15 and JC19 were most closely related to DW01 (approximately 94 % sequence similarity) and to other members of the genus Genomic relatedness (DNA–DNA hybridization) between strains JC15 and JC19 is 88 %. On the basis of phenotypic and molecular genetic evidence, strain JC15 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is JC15 (=CCUG 57102 =NBRC 105216 =KCTC 22506).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.017046-0
2010-07-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/7/1649.html?itemId=/content/journal/ijsem/10.1099/ijs.0.017046-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  2. Bowman J. P. 2005; Genus XIII. Shewanella MacDonell and Colwell 1986, 355VP (Effective publication: MacDonell and Colwell 1985, 180). In Bergey's Manual of Systematic Bacteriology . , 2nd edn. vol. 2, Part B pp 480–491 Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M. New York: Springer;
  3. Cappuccino J. G., Sherman N. 1998 Microbiology–a Laboratory Manual , 5th edn. Menlo Park, CA: Benjamin/Cummings;
    [Google Scholar]
  4. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y.-W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [CrossRef]
    [Google Scholar]
  5. Flores R. M. 2008; Microbes, methanogenesis and microbial gas in coal. Int J Coal Geol 76:1–2 [CrossRef]
    [Google Scholar]
  6. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  7. Holt H. M., Gahrn-Hansen B., Bruun B. 2005; Shewanella algae and Shewanella putrefaciens : clinical and microbiological characteristics. Clin Microbiol Infect 11:347–352 [CrossRef]
    [Google Scholar]
  8. Huang J., Sun B., Zhang X. 2010; Shewanella xiamenensis sp. nov., isolated from coastal sea sediment. Int J Syst Evol Microbiol 60:1585–1589 [CrossRef]
    [Google Scholar]
  9. Imhoff J. F., Süling J., Petri R. 1998; Phylogenetic relationships among the Chromatiaceae , their taxonomic reclassification and description of the new generaAllochromatium , Halochromatium , Isochromatium , Marichromatium , Thiococcus , Thiohalocapsa and Thermochromatium . Int J Syst Bacteriol 48:1129–1143 [CrossRef]
    [Google Scholar]
  10. Ivanova E. P., Flavier S., Christen R. 2004; Phylogenetic relationships among marine Alteromonas -like proteobacteria: emended description of the family Alteromonadaceae and proposal of Pseudoalteromonadaceae fam.nov., Colwelliaceae fam. nov., Shewanellaceae fam. nov., Moritellaceae fam. nov., Ferrimonadaceae fam. nov., Idiomarinaceae fam. nov. and Psychromonadaceae fam. nov. Int J Syst Evol Microbiol 54:1773–1788 [CrossRef]
    [Google Scholar]
  11. Kim D., Baik K. S., Kim M. S., Jung B.-M., Shin T.-S., Chung G.-H., Rhee M. S., Seong C. N. 2007; Shewanella haliotis sp. nov., isolated from the gut microflora of abalone, Haliotis discus hannai . Int J Syst Evol Microbiol 57:2926–2931 [CrossRef]
    [Google Scholar]
  12. Leloup J., Quillet L., Oger C., Boust D., Petit F. 2004; Molecular quantification of sulfate-reducing microorganisms (carrying dsrAB genes) by competitive PCR in estuarine sediments. FEMS Microbiol Ecol 47:207–214 [CrossRef]
    [Google Scholar]
  13. Li D., Hendry P., Faiz M. 2008; A survey of the microbial populations in some Australian coalbed methane reservoirs. Int J Coal Geol 76:14–24 [CrossRef]
    [Google Scholar]
  14. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  15. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  16. Park S. C., Baik K. S., Kim M. S., Kim D., Seong C. N. 2009; Shewanella marina sp. nov., isolated from seawater. Int J Syst Evol Microbiol 59:1888–1894 [CrossRef]
    [Google Scholar]
  17. Pikovskaya R. E. 1948; Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiia 17:362–307 (in Russian
    [Google Scholar]
  18. Postgate J. R. 1984 The Sulphate-Reducing Bacteria Cambridge: Cambridge University Press;
    [Google Scholar]
  19. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467 [CrossRef]
    [Google Scholar]
  20. Sasser M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids , MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  21. Seldin L., Dubnau D. 1985; Deoxyribonucleic acid homology among Bacillus polymyxa , Bacillus macerans , Bacillus azotofixans , and other nitrogen-fixing Bacillus strains. Int J Syst Bacteriol 35:151–154 [CrossRef]
    [Google Scholar]
  22. Strąpoć D., Picardal F. W., Turich C., Schaperdoth I., Macalady J. L., Lipp J. S., Lin Y.-S., Ertefai T. F., Schubotz F. other authors 2008; Methane-producing microbial community in a coal bed of the Illinois Basin. Appl Environ Microbiol 74:2424–2432 [CrossRef]
    [Google Scholar]
  23. Sucharita K., Sasikala Ch., Park S. C., Baik K. S., Seong C. N., Ramana Ch. V. 2009; Shewanella chilikensis sp. nov., a moderately alkaliphilic gammaproteobacterium isolated from a lagoon. Int J Syst Evol Microbiol 59:3111–3115 [CrossRef]
    [Google Scholar]
  24. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef]
    [Google Scholar]
  25. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.017046-0
Loading
/content/journal/ijsem/10.1099/ijs.0.017046-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error