1887

Abstract

A bacterial strain (CC-VM-7), isolated from the faeces of the pill millipede Attems collected in India, was studied to determine its taxonomic allocation. Cells stained Gram-negative and were rod-shaped. Comparative analyses of the 16S rRNA gene sequence of the strain with those of the most closely related species clearly suggested allocation to the genus , with the highest sequence similarities of 99.2 % to CCUG 14555, 98.6 % to CCUG 14556 and 98.4 % to KCTC 12894. 16S rRNA gene sequence similarities to all other species of the genus were below 98 %. The major whole-cell fatty acids were iso-C and iso-C 9. DNA–DNA hybridization resulted in relatedness values of only 29.6 % (reciprocal 31.3 %) to CCUG 14555, 41.2 % (reciprocal 38.8 %) to CCUG 14556 and 35.4 % (reciprocal 38.5 %) to KCTC 12894. DNA–DNA relatedness, biochemical and chemotaxonomic properties clearly show that strain CC-VM-7 represents a novel species, for which the name sp. nov. is proposed. The type strain is CC-VM-7 (=CCUG 57618 =CCM 7645).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.016840-0
2010-08-01
2019-08-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/8/1765.html?itemId=/content/journal/ijsem/10.1099/ijs.0.016840-0&mimeType=html&fmt=ahah

References

  1. Behrendt, U., Ulrich, A. & Schumann, P. ( 2008; ). Chryseobacterium gregarium sp. nov., isolated from decaying plant material. Int J Syst Evol Microbiol 58, 1069–1074.[CrossRef]
    [Google Scholar]
  2. Bernardet, J.-F., Bruun, B. & Hugo, C. ( 2006; ). The genera Chryseobacterium and Elizabethkingia. In The Prokaryotes. A Handbook on the Biology of Bacteria, 3rd edn, vol. 7, pp. 638–676. Edited by M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer & E. Stackebrandt. New York: Springer.
  3. de Beer, H., Hugo, C. J., Jooste, P. J., Willems, A., Vancanneyt, M., Coenye, T. & Vandamme, P. A. R. ( 2005; ). Chryseobacterium vrystaatense sp. nov., isolated from raw chicken in a chicken-processing plant. Int J Syst Evol Microbiol 55, 2149–2153.[CrossRef]
    [Google Scholar]
  4. Gerhardt, P., Murray, R. G. E., Wood, W. A. & Krieg, N. R. (editors) ( 1994; ). Methods for General and Molecular Bacteriology. Washington, DC: American Society for Microbiology.
  5. Hantsis-Zacharov, E., Shakéd, T., Senderovich, Y. & Halpern, M. ( 2008; ). Chryseobacterium oranimense sp. nov., a psychrotolerant, proteolytic and lipolytic bacterium isolated from raw cow's milk. Int J Syst Evol Microbiol 58, 2635–2639.[CrossRef]
    [Google Scholar]
  6. Herzog, P., Winkler, I., Wolking, D., Kämpfer, P. & Lipski, A. ( 2008; ). Chryseobacterium ureilyticum sp. nov., Chryseobacterium gambrini sp. nov., Chryseobacterium pallidum sp. nov. and Chryseobacterium molle sp. nov., isolated from beer-bottling plants. Int J Syst Evol Microbiol 58, 26–33.[CrossRef]
    [Google Scholar]
  7. Hugo, C. J., Segers, P., Hoste, B., Vancanneyt, M. & Kersters, K. ( 2003; ). Chryseobacterium joostei sp. nov., isolated from the dairy environment. Int J Syst Evol Microbiol 53, 771–777.[CrossRef]
    [Google Scholar]
  8. Kämpfer, P. & Kroppenstedt, R. M. ( 1996; ). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42, 989–1005.[CrossRef]
    [Google Scholar]
  9. Kämpfer, P., Steiof, M. & Dott, W. ( 1991; ). Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21, 227–251.[CrossRef]
    [Google Scholar]
  10. Kämpfer, P., Dreyer, U., Neef, A., Dott, W. & Busse, H.-J. ( 2003; ). Chryseobacterium defluvii sp. nov., isolated from waste water. Int J Syst Evol Microbiol 53, 93–97.[CrossRef]
    [Google Scholar]
  11. Kämpfer, P., Vaneechoutte, M. & Wauters, G. ( 2009; ). Chryseobacterium arothri Campbell et al. 2008 is a later heterotypic synonym of Chryseobacterium hominis Vaneechoutte et al. 2007. . Int J Syst Evol Microbiol 59, 695–697.[CrossRef]
    [Google Scholar]
  12. Kim, K. K., Bae, H.-S., Schumann, P. & Lee, S.-T. ( 2005; ). Chryseobacterium daecheongense sp. nov., isolated from freshwater lake sediment. Int J Syst Evol Microbiol 55, 133–138.[CrossRef]
    [Google Scholar]
  13. Kim, K. K., Lee, K. C., Oh, H.-M. & Lee, J.-S. ( 2008; ). Chryseobacterium aquaticum sp. nov., isolated from a water reservoir. Int J Syst Evol Microbiol 58, 533–537.[CrossRef]
    [Google Scholar]
  14. Li, Y., Kawamura, Y., Fujiwara, N., Naka, T., Liu, H., Huang, X., Kobayashi, K. & Ezaki, T. ( 2003; ). Chryseobacterium miricola sp. nov., a novel species isolated from condensation water of space station Mir. Syst Appl Microbiol 26, 523–528.[CrossRef]
    [Google Scholar]
  15. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S. & other authors ( 2004; ). arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef]
    [Google Scholar]
  16. Olsen, G. J., Matsuda, H., Hagstrom, R. & Overbeek, R. ( 1994; ). fastDNAml: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput Appl Biosci 10, 41–48.
    [Google Scholar]
  17. Park, M. S., Jung, S. R., Lee, K. H., Lee, M.-S., Do, J. O., Kim, S. B. & Bae, K. S. ( 2006; ). Chryseobacterium soldanellicola sp. nov. and Chryseobacterium taeanense sp. nov., isolated from roots of sand-dune plants. Int J Syst Evol Microbiol 56, 433–438.[CrossRef]
    [Google Scholar]
  18. Pruesse, E., Quast, C., Knittel, K., Fuchs, B. M., Ludwig, W., Peplies, J. & Glöckner, F. O. ( 2007; ). SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with arb. Nucleic Acids Res 35, 7188–7196.[CrossRef]
    [Google Scholar]
  19. Shen, F.-T., Kämpfer, P., Young, C.-C., Lai, W.-A. & Arun, A. B. ( 2005; ). Chryseobacterium taichungense sp. nov., isolated from contaminated soil. Int J Syst Evol Microbiol 55, 1301–1304.[CrossRef]
    [Google Scholar]
  20. Shimomura, K., Kaji, S. & Hiraishi, A. ( 2005; ). Chryseobacterium shigense sp. nov., a yellow-pigmented, aerobic bacterium isolated from a lactic acid beverage. Int J Syst Evol Microbiol 55, 1903–1906.[CrossRef]
    [Google Scholar]
  21. Szoboszlay, S., Atzél, B., Kukolya, J., Tóth, E. M., Márialigeti, K., Schumann, P. & Kriszt, B. ( 2008; ). Chryseobacterium hungaricum sp. nov., isolated from hydrocarbon-contaminated soil. Int J Syst Evol Microbiol 58, 2748–2754.[CrossRef]
    [Google Scholar]
  22. Tai, C.-J., Kuo, H.-P., Lee, F.-L., Chen, H.-K., Yokota, A. & Lo, C.-C. ( 2006; ). Chryseobacterium taiwanense sp. nov., isolated from soil in Taiwan. Int J Syst Evol Microbiol 56, 1771–1776.[CrossRef]
    [Google Scholar]
  23. Tamura, K., Dudley, J., Nei, M. & Kumar, S. ( 2007; ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef]
    [Google Scholar]
  24. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  25. Vandamme, P., Bernardet, J.-F., Segers, P., Kersters, K. & Holmes, B. ( 1994; ). New perspectives in the classification of the flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 44, 827–831.[CrossRef]
    [Google Scholar]
  26. Weon, H.-Y., Kim, B.-Y., Yoo, S.-H., Kwon, S.-W., Stackebrandt, E. & Go, S.-J. ( 2008; ). Chryseobacterium soli sp. nov. and Chryseobacterium jejuense sp. nov., isolated from soil samples from Jeju, Korea. Int J Syst Evol Microbiol 58, 470–473.[CrossRef]
    [Google Scholar]
  27. Young, C.-C., Kämpfer, P., Shen, F.-T., Lai, W.-A. & Arun, A. B. ( 2005; ). Chryseobacterium formosense sp. nov., isolated from the rhizosphere of Lactuca sativa L. (garden lettuce). Int J Syst Evol Microbiol 55, 423–426.[CrossRef]
    [Google Scholar]
  28. Ziemke, F., Höfle, M. G., Lalucat, J. & Rosselló-Mora, R. ( 1998; ). Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48, 179–186.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.016840-0
Loading
/content/journal/ijsem/10.1099/ijs.0.016840-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error