1887

Abstract

A Gram-negative, motile, non-spore-forming bacterial strain, designated HU1-GD12, was isolated from freshwater sediment. The strain was characterized by using a polyphasic approach in order to determine its taxonomic position. Comparative analysis of the 16S rRNA gene sequence showed that the isolate constituted a distinct branch within the genus , showing the highest level of sequence similarity with respect to RL-3 (96.2 %). Strain HU1-GD12 had a genomic DNA G+C content of 66.8 mol% and Q-10 as the predominant respiratory quinone. Furthermore, the major polyamine component (spermidine) in the cytoplasm and the presence of sphingoglycolipids suggested that strain HU1-GD12 belonged to the family . On the basis of its phenotypic properties and phylogenetic distinctiveness, strain HU1-GD12 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is HU1-GD12 (=LMG 24321=KCTC 22289).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.016816-0
2010-10-01
2024-12-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/10/2473.html?itemId=/content/journal/ijsem/10.1099/ijs.0.016816-0&mimeType=html&fmt=ahah

References

  1. Atlas R. M. 2004 Handbook of Microbiological Media, 3rd edn. Boca Raton: CRC Press;
    [Google Scholar]
  2. Buck J. D. 1982; Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993
    [Google Scholar]
  3. Busse H.-J., Auling G. 1988; Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . Syst Appl Microbiol 11:1–8 [CrossRef]
    [Google Scholar]
  4. Button D. K., Schut F., Quang P., Martin R., Robertson B. R. 1993; Viability and isolation of marine bacteria by dilution culture: theory, procedures, and initial results. Appl Environ Microbiol 59:881–891
    [Google Scholar]
  5. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  6. Felsenstein J. 1989; phylip – phylogeny inference package (version 3.2). Cladistics 5:164–166
    [Google Scholar]
  7. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  8. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  9. Kimura M. 1983 The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press;
    [Google Scholar]
  10. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207
    [Google Scholar]
  11. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  12. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp 115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  13. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R. 1985; Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A 82:6955–6959 [CrossRef]
    [Google Scholar]
  14. Lim J. H., Baek S. H., Lee S. T. 2008; Burkholderia sediminicola sp. nov., isolated from freshwater sediment. Int J Syst Evol Microbiol 58:565–569 [CrossRef]
    [Google Scholar]
  15. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  16. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [CrossRef]
    [Google Scholar]
  17. Muyzer G., de Waal E. C., Uitterlinden A. G. 1993; Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700
    [Google Scholar]
  18. Pal R., Bala S., Dadhwal M., Kumar M., Dhingra G., Prakash O., Prabagaran S. R., Shivaji S., Cullum J. other authors 2005 Hexachlorocyclohexane-degrading bacterial strains Sphingomonas paucimobilis B90A, UT26 and Sp+, having similar lin genes, represent three distinct species, Sphingobium indicum sp.nov., Sphingobium japonicum sp. nov. and Sphingobium francense sp. nov., and reclassification of [Sphingomonas ] chungbukensis as Sphingobium chungbukense comb. nov. Int J Syst Evol Microbiol 55, 1965–1972 [CrossRef]
  19. Pal R., Bhasin V. K., Lal R. 2006; Proposal to reclassify [ Sphingomonas ] xenophaga Stolz et al. 2000 and [ Sphingomonas ] taejonensis Lee etal. 2001 as Sphingobium xenophagum comb. nov. and Sphingopyxis taejonensis comb. nov., respectively. Int J Syst Evol Microbiol 56:667–670 [CrossRef]
    [Google Scholar]
  20. Prakash O., Lal R. 2006; Description of Sphingobium fuliginis sp. nov., a phenanthrene-degrading bacterium from a fly ash dumping site, and reclassification of Sphingomonas cloacae as Sphingobium cloacae comb. nov. Int J Syst Evol Microbiol 56:2147–2152 [CrossRef]
    [Google Scholar]
  21. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  22. Sasser M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids , MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  23. Schenkel E., Berlaimont V., Dubois J., Helson-Cambier M., Hanocq M. 1995; Improved high-performance liquid chromatographic method for the determination of polyamines as their benzoylated derivatives: application to P388 cancer cells. J Chromatogr B Biomed Appl 668:189–197 [CrossRef]
    [Google Scholar]
  24. Singh A., Lal R. 2009; Sphingobium ummariense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium, isolated from HCH-contaminated soil. Int J Syst Evol Microbiol 59:162–166 [CrossRef]
    [Google Scholar]
  25. Swindell S. R., Plasterer T. N. 1997; seqman. Contig assembly. Methods Mol Biol 70:75–89
    [Google Scholar]
  26. Takeuchi M., Hamana K., Hiraishi A. 2001; Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis , on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417
    [Google Scholar]
  27. Ten L. N., Im W. T., Kim M. K., Kang M. S., Lee S. T. 2004; Development of a plate technique for screening of polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates. J Microbiol Methods 56:375–382 [CrossRef]
    [Google Scholar]
  28. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  29. Ushiba Y., Takahara Y., Ohta H. 2003; Sphingobium amiense sp. nov., a novel nonylphenol-degrading bacterium isolated from a river sediment. Int J Syst Evol Microbiol 53:2045–2048 [CrossRef]
    [Google Scholar]
  30. Wittich R. M., Busse H. J., Kämpfer P., Tiirola M., Wieser M., Macedo A. J., Abraham W. R. 2007; Sphingobium aromaticiconvertens sp. nov., a xenobiotic-compound-degrading bacterium from polluted river sediment. Int J Syst Evol Microbiol 57:306–310 [CrossRef]
    [Google Scholar]
  31. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H. 1990; Proposals of Sphingomonas paucimobilis gen.nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov.,Sphingomonas adhaesiva sp. nov., Sphingomonascapsulata comb. nov., and two genospecies of the genus Sphingomonas . Microbiol Immunol 34:99–119 [CrossRef]
    [Google Scholar]
  32. Young C. C., Ho M. J., Arun A. B., Chen W. M., Lai W. A., Shen F. T., Rekha P. D., Yassin A. F. 2007; Sphingobium olei sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 57:2613–2617 [CrossRef]
    [Google Scholar]
  33. Young C. C., Arun A. B., Kämpfer P., Busse H. J., Lai W. A., Chen W. M., Shen F. T., Rekha P. D. 2008; Sphingobium rhizovicinum sp. nov., isolated from rhizosphere soil of Fortunella hindsii (Champ. ex Benth.) Swingle. Int J Syst Evol Microbiol 58:1801–1806 [CrossRef]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.016816-0
Loading
/content/journal/ijsem/10.1099/ijs.0.016816-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error