1887

Abstract

A Gram-negative, motile, non-spore-forming bacterial strain, designated HU1-GD12, was isolated from freshwater sediment. The strain was characterized by using a polyphasic approach in order to determine its taxonomic position. Comparative analysis of the 16S rRNA gene sequence showed that the isolate constituted a distinct branch within the genus , showing the highest level of sequence similarity with respect to RL-3 (96.2 %). Strain HU1-GD12 had a genomic DNA G+C content of 66.8 mol% and Q-10 as the predominant respiratory quinone. Furthermore, the major polyamine component (spermidine) in the cytoplasm and the presence of sphingoglycolipids suggested that strain HU1-GD12 belonged to the family . On the basis of its phenotypic properties and phylogenetic distinctiveness, strain HU1-GD12 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is HU1-GD12 (=LMG 24321=KCTC 22289).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.016816-0
2010-10-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/10/2473.html?itemId=/content/journal/ijsem/10.1099/ijs.0.016816-0&mimeType=html&fmt=ahah

References

  1. Atlas, R. M. ( 2004; ). Handbook of Microbiological Media, 3rd edn. Boca Raton. : CRC Press.
    [Google Scholar]
  2. Buck, J. D. ( 1982; ). Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 44, 992–993.
    [Google Scholar]
  3. Busse, H.-J. & Auling, G. ( 1988; ). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 11, 1–8.[CrossRef]
    [Google Scholar]
  4. Button, D. K., Schut, F., Quang, P., Martin, R. & Robertson, B. R. ( 1993; ). Viability and isolation of marine bacteria by dilution culture: theory, procedures, and initial results. Appl Environ Microbiol 59, 881–891.
    [Google Scholar]
  5. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  6. Felsenstein, J. ( 1989; ). phylip – phylogeny inference package (version 3.2). Cladistics 5, 164–166.
    [Google Scholar]
  7. Fitch, W. M. ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20, 406–416.[CrossRef]
    [Google Scholar]
  8. Hall, T. A. ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98.
    [Google Scholar]
  9. Kimura, M. ( 1983; ). The Neutral Theory of Molecular Evolution. Cambridge. : Cambridge University Press.
    [Google Scholar]
  10. Komagata, K. & Suzuki, K. ( 1987; ). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19, 161–207.
    [Google Scholar]
  11. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  12. Lane, D. J. ( 1991; ). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt, E. & Goodfellow, M.. Chichester. : Wiley.
    [Google Scholar]
  13. Lane, D. J., Pace, B., Olsen, G. J., Stahl, D. A., Sogin, M. L. & Pace, N. R. ( 1985; ). Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A 82, 6955–6959.[CrossRef]
    [Google Scholar]
  14. Lim, J. H., Baek, S. H. & Lee, S. T. ( 2008; ). Burkholderia sediminicola sp. nov., isolated from freshwater sediment. Int J Syst Evol Microbiol 58, 565–569.[CrossRef]
    [Google Scholar]
  15. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  16. Minnikin, D. E., O'Donnell, A. G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A. & Parlett, J. H. ( 1984; ). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2, 233–241.[CrossRef]
    [Google Scholar]
  17. Muyzer, G., de Waal, E. C. & Uitterlinden, A. G. ( 1993; ). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59, 695–700.
    [Google Scholar]
  18. Pal, R., Bala, S., Dadhwal, M., Kumar, M., Dhingra, G., Prakash, O., Prabagaran, S. R., Shivaji, S., Cullum, J. & other authors ( 2005; ). Hexachlorocyclohexane-degrading bacterial strains Sphingomonas paucimobilis B90A, UT26 and Sp+, having similar lin genes, represent three distinct species, Sphingobium indicum sp. nov., Sphingobium japonicum sp. nov. and Sphingobium francense sp. nov., and reclassification of [Sphingomonas] chungbukensis as Sphingobium chungbukense comb. nov. Int J Syst Evol Microbiol 55, 1965–1972.[CrossRef]
    [Google Scholar]
  19. Pal, R., Bhasin, V. K. & Lal, R. ( 2006; ). Proposal to reclassify [Sphingomonas] xenophaga Stolz et al. 2000 and [Sphingomonas] taejonensis Lee et al. 2001 as Sphingobium xenophagum comb. nov. and Sphingopyxis taejonensis comb. nov., respectively. Int J Syst Evol Microbiol 56, 667–670.[CrossRef]
    [Google Scholar]
  20. Prakash, O. & Lal, R. ( 2006; ). Description of Sphingobium fuliginis sp. nov., a phenanthrene-degrading bacterium from a fly ash dumping site, and reclassification of Sphingomonas cloacae as Sphingobium cloacae comb. nov. Int J Syst Evol Microbiol 56, 2147–2152.[CrossRef]
    [Google Scholar]
  21. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  22. Sasser, M. ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  23. Schenkel, E., Berlaimont, V., Dubois, J., Helson-Cambier, M. & Hanocq, M. ( 1995; ). Improved high-performance liquid chromatographic method for the determination of polyamines as their benzoylated derivatives: application to P388 cancer cells. J Chromatogr B Biomed Appl 668, 189–197.[CrossRef]
    [Google Scholar]
  24. Singh, A. & Lal, R. ( 2009; ). Sphingobium ummariense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium, isolated from HCH-contaminated soil. Int J Syst Evol Microbiol 59, 162–166.[CrossRef]
    [Google Scholar]
  25. Swindell, S. R. & Plasterer, T. N. ( 1997; ). seqman. Contig assembly. Methods Mol Biol 70, 75–89.
    [Google Scholar]
  26. Takeuchi, M., Hamana, K. & Hiraishi, A. ( 2001; ). Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51, 1405–1417.
    [Google Scholar]
  27. Ten, L. N., Im, W. T., Kim, M. K., Kang, M. S. & Lee, S. T. ( 2004; ). Development of a plate technique for screening of polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates. J Microbiol Methods 56, 375–382.[CrossRef]
    [Google Scholar]
  28. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  29. Ushiba, Y., Takahara, Y. & Ohta, H. ( 2003; ). Sphingobium amiense sp. nov., a novel nonylphenol-degrading bacterium isolated from a river sediment. Int J Syst Evol Microbiol 53, 2045–2048.[CrossRef]
    [Google Scholar]
  30. Wittich, R. M., Busse, H. J., Kämpfer, P., Tiirola, M., Wieser, M., Macedo, A. J. & Abraham, W. R. ( 2007; ). Sphingobium aromaticiconvertens sp. nov., a xenobiotic-compound-degrading bacterium from polluted river sediment. Int J Syst Evol Microbiol 57, 306–310.[CrossRef]
    [Google Scholar]
  31. Yabuuchi, E., Yano, I., Oyaizu, H., Hashimoto, Y., Ezaki, T. & Yamamoto, H. ( 1990; ). Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 34, 99–119.[CrossRef]
    [Google Scholar]
  32. Young, C. C., Ho, M. J., Arun, A. B., Chen, W. M., Lai, W. A., Shen, F. T., Rekha, P. D. & Yassin, A. F. ( 2007; ). Sphingobium olei sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 57, 2613–2617.[CrossRef]
    [Google Scholar]
  33. Young, C. C., Arun, A. B., Kämpfer, P., Busse, H. J., Lai, W. A., Chen, W. M., Shen, F. T. & Rekha, P. D. ( 2008; ). Sphingobium rhizovicinum sp. nov., isolated from rhizosphere soil of Fortunella hindsii (Champ. ex Benth.) Swingle. Int J Syst Evol Microbiol 58, 1801–1806.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.016816-0
Loading
/content/journal/ijsem/10.1099/ijs.0.016816-0
Loading

Data & Media loading...

Supplements

Maximum-likelihood phylogenetic tree, constructed from a comparative analysis of 16S rRNA gene sequences, showing the relationships between strain HU1-GD12 and related species. [ PDF] 35 KB

PDF

Two-dimensional TLC of polar lipids of strains: a, HU1-GD12 ; b, RL-3 . Chloroform/methanol/water (65:25:4) was used in the first direction, followed by chloroform/acetic acid/methanol/water (80:15:12:4) in the second direction. PE, Phosphatidylethanolamine; PME, phosphatidylmonomethylethanolamine; PG, phosphatidylglycerol; DPG, diphosphatidylglycerol; PC, phosphatidylcholine; SGL, sphingoglycolipid; GL1–3, unknown glycolipids; AGL1–3, unknown aminoglycolipids; L, unknown lipid; PL, unknown phospholipid; yPig, yellow pigment.

IMAGE

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error