1887

Abstract

A Gram-stain-positive, halotolerant, neutrophilic, rod-shaped bacterium, strain MF38, was isolated from a saline–alkaline soil in China and subjected to a polyphasic taxonomic characterization. The isolate grew in the presence of 0–15 % (w/v) NaCl and at pH 6.5–8.5; optimum growth was observed with 3.0 % (w/v) NaCl and at pH 7.0. Chemotaxonomic analysis showed menaquinone MK-7 as the predominant respiratory quinone and anteiso-C, anteiso-C, iso-C, C and C as major fatty acids. The genomic DNA G+C content was 35.3 mol%. 16S rRNA gene sequence similarities of strain MF38 with type strains of described species ranged from 95.3 to 97.7 %. Strain MF38 exhibited the closest phylogenetic affinity to the type strain of , with 97.7 % 16S rRNA gene sequence similarity. The DNA–DNA reassociation between strain MF38 and DSM 11125 was 45 %. On the basis of phenotypic and genotypic data, strain MF38 represents a novel species of the genus , for which the name sp. nov. (type strain MF38 =CGMCC 1.7727 =JCM 15711) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.016808-0
2010-06-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/6/1383.html?itemId=/content/journal/ijsem/10.1099/ijs.0.016808-0&mimeType=html&fmt=ahah

References

  1. Ahmed, I., Yokota, A. & Fujiwara, T. ( 2007; ). Gracilibacillus boraciitolerans sp. nov., a highly boron-tolerant and moderately halotolerant bacterium isolated from soil. Int J Syst Evol Microbiol 57, 796–802.[CrossRef]
    [Google Scholar]
  2. Carrasco, I. J., Márquez, M. C., Yanfen, X., Ma, Y., Cowan, D. A., Jones, B. E., Grant, W. D. & Ventosa, A. ( 2006; ). Gracilibacillus orientalis sp. nov., a novel moderately halophilic bacterium isolated from a salt lake in Inner Mongolia, China. Int J Syst Evol Microbiol 56, 599–604.[CrossRef]
    [Google Scholar]
  3. Chamroensaksri, N., Tanasupawat, S., Akaracharanya, A., Visessanguan, W., Kudo, T. & Itoh, T. ( 2010; ). Gracilibacillus thailandensis sp. nov., from fermented fish (pla-ra) in Thailand. Int J Syst Evol Microbiol 60, 944–948.[CrossRef]
    [Google Scholar]
  4. Chen, Y.-G., Cui, X.-L., Zhang, Y.-Q., Li, W.-J., Wang, Y.-X., Xu, L.-H., Peng, Q., Wen, M.-L. & Jiang, C.-L. ( 2008a; ). Gracilibacillus halophilus sp. nov., a moderately halophilic bacterium isolated from saline soil. Int J Syst Evol Microbiol 58, 2403–2408.[CrossRef]
    [Google Scholar]
  5. Chen, Y.-G., Cui, X.-L., Zhang, Y.-Q., Li, W.-J., Wang, Y.-X., Xu, L.-H., Peng, Q., Wen, M.-L. & Jiang, C.-L. ( 2008b; ). Gracilibacillus quinghaiensis sp. nov., isolated from salt-lake sediment in Qaidam Basin, north-west China. Syst Appl Microbiol 31, 183–189.[CrossRef]
    [Google Scholar]
  6. Chun, J., Lee, J.-H., Jung, Y., Kim, M., Kim, S., Kim, B. K. & Lim, Y.-W. ( 2007; ). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57, 2259–2261.[CrossRef]
    [Google Scholar]
  7. De Ley, J., Cattoir, H. & Reynaerts, A. ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef]
    [Google Scholar]
  8. Felsenstein, J. ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef]
    [Google Scholar]
  9. Fitch, W. M. ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20, 406–416.[CrossRef]
    [Google Scholar]
  10. Huß, V. A. R., Festl, H. & Schleifer, K. H. ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef]
    [Google Scholar]
  11. Jeon, C. O., Lim, J.-M., Jang, H. H., Park, D.-J., Xu, L.-H., Jiang, C.-L. & Kim, C.-J. ( 2008; ). Gracilibacillus lacisalsi sp. nov., a halophilic Gram-positive bacterium from a salt lake in China. Int J Syst Evol Microbiol 58, 2282–2286.[CrossRef]
    [Google Scholar]
  12. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  13. Komagata, K. & Suzuki, K. ( 1987; ). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19, 161–207.
    [Google Scholar]
  14. Kuykendall, L. D., Roy, M. A., O’Neill, J. J. & Devine, T. E. ( 1988; ). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 38, 358–361.[CrossRef]
    [Google Scholar]
  15. Lawson, P. A., Deutch, C. E. & Collins, M. D. ( 1996; ). Phylogenetic characterization of a novel salt-tolerant Bacillus species: description of Bacillus dipsosauri sp. nov. J Appl Bacteriol 81, 109–112.[CrossRef]
    [Google Scholar]
  16. Leifson, E. ( 1963; ). Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85, 1183–1184.
    [Google Scholar]
  17. Mata, J. A., Martínez-Cánovas, J., Quesada, E. & Béjar, V. ( 2002; ). A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 25, 360–375.[CrossRef]
    [Google Scholar]
  18. Mesbah, M. & Whitman, W. B. ( 1989; ). Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. J Chromatogr 479, 297–306.[CrossRef]
    [Google Scholar]
  19. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  20. Tamura, K., Dudley, J., Nei, M. & Kumar, S. ( 2007; ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef]
    [Google Scholar]
  21. Tang, S.-K., Wang, Y., Lou, K., Mao, P.-H., Jin, X., Jiang, C.-L., Xu, L.-H. & Li, W.-J. ( 2009; ). Gracilibacillus saliphilus sp. nov., a moderately halophilic bacterium isolated from a salt lake. Int J Syst Evol Microbiol 59, 1620–1624.[CrossRef]
    [Google Scholar]
  22. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  23. Ventosa, A., Quesada, E., Rodriguez-Valera, F., Ruiz-Berraquero, F. & Ramos-Cormenzana, A. ( 1982; ). Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 128, 1959–1968.
    [Google Scholar]
  24. Wainø, M., Tindall, B. J., Schumann, P. & Ingvorsen, K. ( 1999; ). Gracilibacillus gen. nov., with description of Gracilibacillus halotolerans gen. nov., sp. nov.; transfer of Bacillus dipsosauri to Gracilibacillus dipsosauri comb. nov., and Bacillus salexigens to the genus Salibacillus gen. nov., as Salibacillus salexigens comb. nov. Int J Syst Bacteriol 49, 821–831.[CrossRef]
    [Google Scholar]
  25. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  26. Xu, X.-W., Wu, Y.-H., Wang, C.-S., Oren, A., Zhou, P.-J. & Wu, M. ( 2007a; ). Haloferax larsenii sp. nov., an extremely halophilic archaeon from a solar saltern. Int J Syst Evol Microbiol 57, 717–720.[CrossRef]
    [Google Scholar]
  27. Xu, X.-W., Wu, Y.-H., Zhou, Z., Wang, C.-S., Zhou, Y.-G., Zhang, H.-B., Wang, Y. & Wu, M. ( 2007b; ). Halomonas saccharevitans sp. nov., Halomonas arcis sp. nov. and Halomonas subterranea sp. nov., halophilic bacteria isolated from hypersaline environments of China. Int J Syst Evol Microbiol 57, 1619–1624.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.016808-0
Loading
/content/journal/ijsem/10.1099/ijs.0.016808-0
Loading

Data & Media loading...

Supplements

Phylogenetic trees based on 16S rRNA gene sequences using the maximum-parsimony and maximum-likelihood methods. [PDF](44 KB)

PDF

Transmission electron micrograph of an exponentially grown cell of strain MF38 . Bar, 1 µm.

IMAGE

[PDF file of Supplementary Tables](80 KB)

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error