Two novel sulfate-reducing bacteria, strains CY1 and CY2, were isolated from heavy-metal-contaminated sediments of Lake Coeur d'Alene, Idaho, USA. Strains CY1 and CY2 were found to contain -type cytochromes and to reduce sulfate, sulfite, thiosulfate, elemental sulfur, DMSO, anthraquinone disulfonate and fumarate using lactate as an electron donor. In a comparison of 16S rRNA gene sequences, CY1 and CY2 were found to be 100 % identical, but only 97 and 92.4 % similar, respectively, to the type strains of and . Unlike these species, however, CY1 was neither able to disproportionate thiosulfate nor able to use yeast extract or amino acids as electron donors. These data, considered in conjunction with differences among strain CY1 and the two related type strains in chemotaxonomy, riboprint patterns, temperature and pH optima, support recognition of a distinct and novel species within the genus , sp. nov., with the type strain CY1 (=DSM 15450 =JCM 14124).


Article metrics loading...

Loading full text...

Full text loading...



  1. Abildgaard, L., Nielsen, M. B., Kjeldsen, K. U. & Ingvorsen, K.(2006).Desulfovibrio alkalitolerans sp. nov., a novel alkalitolerant, sulphate-reducing bacterium isolated from district heating water. Int J Syst Evol Microbiol 56, 1019–1024.[CrossRef] [Google Scholar]
  2. Acha, D., Iniguez, V., Roulet, M., Guimaraes, J. R. D., Luna, R., Alanoca, L. & Sanchez, S.(2005). Sulfate-reducing bacteria in floating macrophyte rhizospheres from an Amazonian floodplain lake in Bolivia and their association with Hg methylation. Appl Environ Microbiol 71, 7531–7535.[CrossRef] [Google Scholar]
  3. Allison, J. D., Brown, D. S. & Novo-Gradac, K. J.(1991).MINTEQA2/PRODEFA2. A Geochemical Assessment Model for Environmental Systems. EPA/600/3-91/021. Cincinnati, OH: US Environmental Protection Agency.
  4. Baena, S., Fardeau, M.-L., Labat, M., Ollivier, B., Garcia, J.-L. & Patel, B. K. C.(1998).Desulfovibrio aminophilus sp. nov., a novel amino acid degrading and sulfate reducing bacterium from an anaerobic dairy wastewater lagoon. Syst Appl Microbiol 21, 498–504.[CrossRef] [Google Scholar]
  5. Bale, S. J., Goodman, K., Rochelle, P. A., Marchesi, J. R., Fry, J. C., Weightman, A. J. & Parkes, R. J.(1997).Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea. Int J Syst Bacteriol 47, 515–521.[CrossRef] [Google Scholar]
  6. Barney, M., Volgyi, A., Navarro, A. & Ryder, D.(2001). Riboprinting and 16S rRNA gene sequencing for identification of brewery Pediococcus isolates. Appl Environ Microbiol 67, 553–560.[CrossRef] [Google Scholar]
  7. Bruce, J.(1996). Automated system rapidly identifies and characterizes microorganisms in food. Food Technol 50, 77–81. [Google Scholar]
  8. Cappuccino, J. G. & Sherman, N.(1998).Microbiology: a Laboratory Manual, 5th edn. Menlo Park, CA: Benjamin/Cummings.
  9. Clark, M. E., He, Q., He, Z., Huang, K. H., Alm, E. J., Wan, X.-F., Hazen, T. C., Arkin, A. P., Wall, J. D. & other authors(2006). Temporal transcriptomic analysis of Desulfovibrio vulgaris Hildenborough transitions into stationary phase during electron donor depletion. Appl Environ Microbiol 72, 5578–5588.[CrossRef] [Google Scholar]
  10. Cline, J. D.(1969). Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14, 454–458.[CrossRef] [Google Scholar]
  11. Cummings, D. E., March, A. W., Bostick, B., Spring, S., Caccavo, F., Fendorf, S. E. & Rosenzweig, R. F.(2000). Evidence for microbial Fe(III) reduction in anoxic, mining-impacted lake sediments (Lake Coeur d'Alene, USA). Appl Environ Microbiol 66, 154–162.[CrossRef] [Google Scholar]
  12. Cypionka, H. & Pfennig, N.(1986). Growth yields of Desulfotomaculum orientis with hydrogen in chemostat culture. Arch Microbiol 143, 366–369. [Google Scholar]
  13. Devereux, R., He, S.-H., Doyle, C. L., Orkland, S., Stahl, D. A., LeGall, J. & Whitman, W. B.(1990). Diversity and origin of Desulfovibrio species: phylogenetic definition of a family. J Bacteriol 172, 3609–3619. [Google Scholar]
  14. Elshahed, M. S., Senko, J. M., Najar, F. Z., Kenton, S. M., Roe, B. A., Dewers, T. A., Spear, J. R. & Krumholz, L.(2003). Bacterial diversity and sulfur cycling in a mesophilic sulfide-rich spring. Appl Environ Microbiol 69, 5609–5621.[CrossRef] [Google Scholar]
  15. Fröhlich, J., Sass, H., Babenzien, H. D., Kuhnigk, T., Varma, A., Saxena, S., Nalepa, C., Pfeiffer, P. & König, H.(1999). Isolation of Desulfovibrio intestinalis sp. nov. from the hindgut of the lower termite Mastotermes darwiniensis. Can J Microbiol 45, 145–152.[CrossRef] [Google Scholar]
  16. Goldstein, E. J. C., Citron, D. M., Peraino, V. A. & Cross, S.(2003).Desulfovibrio desulfuricans bacteremia and review of human Desulfovibrio infections. J Clin Microbiol 41, 2752–2754.[CrossRef] [Google Scholar]
  17. Heidelberg, J. F., Seshadri, R., Haveman, S. A., Hemme, C. L., Paulsen, I. T., Kolonay, J. F., Eisen, J. A., Ward, N., Methe, B. & other authors(2004). The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat Biotechnol 22, 554–559.[CrossRef] [Google Scholar]
  18. Hernandez-Eugenio, G., Fardeau, M.-L., Patel, B. K. C., Macarie, H., Garcia, J.-L. & Ollivier, B.(2000).Desulfovibrio mexicanus sp. nov., a sulfate-reducing bacterium isolated from an upflow anaerobic sludge blanket (UASB) reactor treating cheese wastewaters. Anaerobe 6, 305–312.[CrossRef] [Google Scholar]
  19. Humphries, A. C. & Macaskie, L. E.(2005). Reduction of Cr(VI) by palladized biomass of Desulfovibrio vulgaris NCIMB 8303. J Chem Technol Biotechnol 80, 1378–1382.[CrossRef] [Google Scholar]
  20. Ito, T., Okabe, S., Satoh, H. & Watanabe, Y.(2002). Successional development of sulfate-reducing bacterial populations and their activities in a wastewater biofilm growing under microaerophilic conditions. Appl Environ Microbiol 68, 1392–1402.[CrossRef] [Google Scholar]
  21. Jahnke, K. D.(1992).basic computer program for evaluation of spectroscopic DNA renaturation data from Gilford System 2600 spectrophotometer on a PC/XT/AT type personal computer. J Microbiol Methods 15, 61–73.[CrossRef] [Google Scholar]
  22. Johnson, D. L. & Pilson, M. E. Q.(1972). Spectrophotometric determination of arsenite, arsenate, and phosphate in natural waters. Anal Chim Acta 58, 289–299.[CrossRef] [Google Scholar]
  23. Jukes, T. H. & Cantor, C. R.(1969). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  24. Kämpfer, P. & Kroppenstedt, R. M.(1996). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42, 989–1005.[CrossRef] [Google Scholar]
  25. Karr, E. A., Sattley, W. M., Rice, M. R., Jung, D. O., Madigan, M. T. & Achenbach, L. A.(2005). Diversity and distribution of sulfate-reducing bacteria in permanently frozen Lake Fryxell, McMurdo Dry Valleys, Antarctica. Appl Environ Microbiol 71, 6353–6359.[CrossRef] [Google Scholar]
  26. Kroppenstedt, R. M.(1985). Fatty acid and menaquinone analysis of actinomycetes and related organisms. In Chemical Methods in Bacterial Systematics (Society for Applied Bacteriology Technical Series vol. 20), pp. 173–199. Edited by M. Goodfellow & D. E. Minnikin. New York: Academic Press.
  27. Labrenz, M. & Banfield, J. F.(2004). Sulfate-reducing bacteria-dominated biofilms that precipitate ZnS in a subsurface circumneutral-pH mine drainage system. Microb Ecol 47, 205–217. [Google Scholar]
  28. Lovley, D. R.(2001). Anaerobes to the rescue. Science 293, 1444–1446.[CrossRef] [Google Scholar]
  29. Lovley, D. R., Coates, J. D., Blunt-Harris, E. L., Phillips, E. J. P. & Woodward, J. C.(1996). Humic substances as electron acceptors for microbial respiration. Nature 382, 445–448.[CrossRef] [Google Scholar]
  30. Madigan, M. T., Martinko, J. M. & Parker, J.(1997).Brock Biology of Microorganisms, 8th edn. Upper Saddle River, NJ: Prentice Hall.
  31. Magee, C. M., Rodeheaver, G., Egerton, M. T. & Edlich, R. F.(1975). A more reliable Gram-staining technique for diagnosis of surgical infections. Am J Surg 130, 341–346.[CrossRef] [Google Scholar]
  32. Magot, M., Basso, O., Tardy-Jacquenod, C. & Caumette, P.(2004).Desulfovibrio bastinii sp. nov. and Desulfovibrio gracilis sp. nov., moderately halophilic, sulfate-reducing bacteria isolated from deep subsurface oilfield water. Int J Syst Evol Microbiol 54, 1693–1697.[CrossRef] [Google Scholar]
  33. Martens-Habbena, W. & Sass, H.(2006). Sensitive determination of microbial growth by nucleic acid staining in aqueous suspension. Appl Environ Microbiol 72, 87–95.[CrossRef] [Google Scholar]
  34. Mesbah, M., Premachandran, U. & Whitman, W. B.(1989). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef] [Google Scholar]
  35. Miller, L. T.(1982). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16, 584–586. [Google Scholar]
  36. Mills, H. J., Hodges, C., Wilson, K., MacDonald, I. R. & Sobecky, P. A.(2003). Microbial diversity in sediments associated with surface-breaching gas hydrate mounds in the Gulf of Mexico. FEMS Microbiol Ecol 46, 39–52.[CrossRef] [Google Scholar]
  37. Miranda-Tello, E., Fardeau, M. L., Fernandez, L., Ramirez, F., Cayol, J. L., Thomas, P., Garcia, J. L. & Ollivier, B.(2003).Desulfovibrio capillatus sp. nov., a novel sulfate-reducing bacterium isolated from an oil field separator located in the Gulf of Mexico. Anaerobe 9, 97–103.[CrossRef] [Google Scholar]
  38. Neria-Gonzalez, I., Wang, E. T., Ramirez, F., Romero, J. M. & Hernandez-Rodriguez, C.(2006). Characterization of bacterial community associated to biofilms of corroded oil pipelines from the southeast of Mexico. Anaerobe 12, 122–133.[CrossRef] [Google Scholar]
  39. Niggemyer, A., Spring, S., Stackebrandt, E. & Rosenzweig, R. F.(2001). Isolation and characterization of a novel As(V)-reducing bacterium, implications for arsenic mobilizations and the genus Desulfitobacterium. Appl Environ Microbiol 67, 5568–5580.[CrossRef] [Google Scholar]
  40. Payne, R. B., Darren, M., Gentry, D. M., Rapp-Giles, B. J., Casalot, L. & Wall, J. D.(2002). Uranium reduction by Desulfovibrio desulfuricans strain G20 and a cytochrome c3 mutant. Appl Environ Microbiol 68, 3129–3132.[CrossRef] [Google Scholar]
  41. Postgate, J. R.(1959). A diagnostic reaction of Desulphovibrio desulphuricans. Nature 183, 481–482. [Google Scholar]
  42. Postgate, J. R. & Campbell, L. L.(1965). Classification of Desulfovibrio species, the non-sporulating sulfate-reducing bacteria. Bacteriol Rev 29, 359–363. [Google Scholar]
  43. Rainey, F. A., Ward-Rainey, N., Kroppenstedt, R. M. & Stackebrandt, E.(1996). The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage; proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46, 1088–1092.[CrossRef] [Google Scholar]
  44. Ramamoorthy, S., Sass, H., Langner, H., Schumann, P., Kroppenstedt, R. M., Spring, S., Overmann, J. & Rosenzweig, R. F.(2006).Desulfosporosinus lacus sp. nov., a sulfate-reducing bacterium isolated from pristine freshwater lake sediments. Int J Syst Evol Microbiol 56, 2729–2736.[CrossRef] [Google Scholar]
  45. Ramamoorthy, S., Piotrowski, J. S., Langner, H. W., Holben, W. E., Morra, M. J. & Rosenzweig, R. F.(2009). Ecology of sulfate-reducing bacteria in an iron-dominated, mining-impacted freshwater sediment. J Environ Qual 38, 675–684.[CrossRef] [Google Scholar]
  46. Reichenbecher, W. & Schink, B.(1997).Desulfovibrio inopinatus, sp. nov., a new sulfate-reducing bacterium that degrades hydroxyhydroquinone (1,2,4-trihydroxybenzene). Arch Microbiol 168, 338–344.[CrossRef] [Google Scholar]
  47. Saitou, N. & Nei, M.(1987). The neighbor-joining method, a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  48. Sass, H. & Cypionka, H.(2004). Isolation of sulfate-reducing bacteria from the terrestrial deep subsurface and description of Desulfovibrio cavernae sp. nov. Syst Appl Microbiol 27, 541–548.[CrossRef] [Google Scholar]
  49. Sass, H., Berchtold, M., Branke, J., König, H., Cypionka, H. & Babenzien, H. D.(1998). Psychrotolerant sulfate-reducing bacteria from an oxic freshwater sediment, description of Desulfovibrio cuneatus sp. nov. and Desulfovibrio litoralis sp. nov. Syst Appl Microbiol 21, 212–219.[CrossRef] [Google Scholar]
  50. Scott, T. M., Parveen, S., Portier, K. M., Rose, J. B., Tamplin, M. L., Farrah, S. R., Koo, A. & Lukasik, J.(2003). Geographical variation in ribotype profiles of Escherichia coli isolates from humans, swine, poultry, beef and dairy cattle in Florida. Appl Environ Microbiol 69, 1089–1092.[CrossRef] [Google Scholar]
  51. Sun, B. L., Cole, J. R., Sanford, R. A. & Tiedje, J. M.(2000). Isolation and characterization of Desulfovibrio dechloracetivorans sp. nov., a marine dechlorinating bacterium growing by coupling the oxidation of acetate to the reductive dechlorination of 2-chlorophenol. Appl Environ Microbiol 66, 2408–2413.[CrossRef] [Google Scholar]
  52. Tuttle, J. H., Dugan, P. R. & Randles, C. I.(1969). Microbial sulfate reduction and its potential utility as an acid mine water pollution abatement procedure. Appl Microbiol 17, 297–302. [Google Scholar]
  53. Vandieken, V., Knoblauch, C. & Jørgensen, B. B.(2006).Desulfovibrio frigidus sp. nov. and Desulfovibrio ferrireducens sp. nov., psychrotolerant bacteria isolated from Arctic fjord sediments (Svalbard) with the ability to reduce Fe(III). Int J Syst Evol Microbiol 56, 681–685.[CrossRef] [Google Scholar]
  54. Widdel, F.(1980).Anaerober Abbau von Fettsäuren und Benzoesäure durch neu isolierte Arten Sulfat-reduzierender Bakterien. Doctoral thesis, University of Göttingen, Göttingen, Federal Republic of Germany (in German).
  55. Widdel, F. & Pfennig, N.(1977). A new anaerobic, sporing, acetate-oxidizing, sulfate-reducing bacterium, Desulfotomaculum (emend.) acetoxidans. Arch Microbiol 112, 119–122.[CrossRef] [Google Scholar]

Data & Media loading...


Electron micrograph of a cell of strain CY1 negatively stained with uranyl acetate. The cell is motile by a single monopolar flagellum. Bar, 0.5 µm.


Normalized II ribotype patterns of strains CY1 and CY2 are distinct from that of the phylogenetically related strain DSM 13116 .

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error