1887

Abstract

The evolution and taxonomy of strains isolated in Italy and Finland were studied by phylogenetic analysis of different genes, comparative analysis of small rRNA gene intervening sequence (IVS), amplified fragment length polymorphism analysis and DNA–DNA hybridization. The results of this study divided the strains into two distinct and divergent genomic groups. In the absence of a specific phenotype or pathotype to distinguish these groups, however, they may be referred to as two genomospecies: and sp. FL56. The phylogenetic network of and gene sequences, as well as the comparative analysis of small rRNA gene IVS, suggests independent evolution of the two genomospecies. In particular, sp. FL56 seems to be the result of adaptation of an ancestral strain in a new host. The phenomenon of adaptation to different hosts, or different intestinal niches in the same host, associated with high mutation and recombination rates could explain the evolution and the complex taxonomy of the genus . A comprehensive phylogenomics study of this genus would be useful to properly investigate this hypothesis.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.016287-0
2010-10-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/10/2392.html?itemId=/content/journal/ijsem/10.1099/ijs.0.016287-0&mimeType=html&fmt=ahah

References

  1. Aabenhus, R., On, S. L., Siemer, B. L., Permin, H. & Andersen, L. P. ( 2005; ). Delineation of Campylobacter concisus genomospecies by amplified fragment length polymorphism analysis and correlation of results with clinical data. J Clin Microbiol 43, 5091–5096.[CrossRef]
    [Google Scholar]
  2. Bryant, D. & Moulton, V. ( 2004; ). Neighbor-net: an agglomerative method for the construction of phylogenetic networks. Mol Biol Evol 21, 255–265.
    [Google Scholar]
  3. Debruyne, L., On, S. L. W., De Brandt, E. & Vandamme, P. ( 2009; ). Novel Campylobacter lari-like bacteria from humans and molluscs: description of Campylobacter peloridis sp. nov., Campylobacter lari subsp. concheus subsp. nov. and Campylobacter lari subsp. lari subsp. nov. Int J Syst Evol Microbiol 59, 1126–1132.[CrossRef]
    [Google Scholar]
  4. De Ley, J., Cattoir, H. & Reynaerts, A. ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef]
    [Google Scholar]
  5. Dewhirst, F. E., Fox, J. G., Mendes, E. N., Paster, B. J., Gates, C. E., Kirkbride, C. A. & Eaton, K. A. ( 2000; ).Flexispira rappini’ strains represent at least 10 Helicobacter taxa. Int J Syst Evol Microbiol 50, 1781–1787.
    [Google Scholar]
  6. Dewhirst, F. E., Shen, Z., Scimeca, M. S., Stokes, L. N., Boumenna, T., Chen, T., Paster, B. J. & Fox, J. G. ( 2005; ). Discordant 16S and 23S rRNA gene phylogenies for the genus Helicobacter: implications for phylogenetic inference and systematics. J Bacteriol 187, 6106–6118.[CrossRef]
    [Google Scholar]
  7. Duim, B., Vandamme, P. A. R., Rigter, A., Laevens, S., Dijkstra, J. R. & Wagenaar, J. A. ( 2001; ). Differentiation of Campylobacter species by AFLP fingerprinting. Microbiology 147, 2729–2737.
    [Google Scholar]
  8. Eaton, K. A., Dewhirst, F. E., Paster, B. J., Tzellas, N., Coleman, B. E., Paola, J. & Sherding, R. ( 1996; ). Prevalence and varieties of Helicobacter species in dogs from random sources and pet dogs: animal and public health implications. J Clin Microbiol 34, 3165–3170.
    [Google Scholar]
  9. Eppinger, M., Baar, C., Linz, B., Raddatz, G., Lanz, C., Keller, H., Morelli, G., Gressmann, H., Achtman, M. & Schuster, S. C. ( 2006; ). Who ate whom? Adaptive Helicobacter genomic changes that accompanied a host jump from early humans to large felines. PLoS Genet 2, e120.[CrossRef]
    [Google Scholar]
  10. Fox, J. G., Yan, L. L., Dewhirst, F. E., Paster, B. J., Shames, B., Murphy, J. C., Hayward, A., Belcher, J. C. & Mendes, E. N. ( 1995; ). Helicobacter bilis sp. nov., a novel Helicobacter species isolated from bile, livers, and intestines of aged, inbred mice. J Clin Microbiol 33, 445–454.
    [Google Scholar]
  11. Fox, J. G., Dewhirst, F. E., Shen, Z., Feng, Y., Taylor, N. S., Paster, B. J., Ericson, R. L., Lau, C. N., Correa, P. & other authors ( 1998; ). Hepatic Helicobacter species identified in bile and gallbladder tissue from Chileans with chronic cholecystitis. Gastroenterology 114, 755–763.[CrossRef]
    [Google Scholar]
  12. Gevers, D., Dawyndt, P., Vandamme, P., Willems, A., Vancanneyt, M., Swings, J. & De Vos, P. ( 2006; ). Stepping stones towards a new prokaryotic taxonomy. Philos Trans R Soc Lond B Biol Sci 361, 1911–1916.[CrossRef]
    [Google Scholar]
  13. Hänninen, M. L., Utriainen, M., Happonen, I. & Dewhirst, F. E. ( 2003; ). Helicobacter sp. flexispira 16S rDNA taxa 1, 4 and 5 and Finnish porcine Helicobacter isolates are members of the species Helicobacter trogontum (taxon 6). Int J Syst Evol Microbiol 53, 425–433.[CrossRef]
    [Google Scholar]
  14. Hänninen, M. L., Karenlampi, R. I., Koort, J. M., Mikkonen, T. & Björkroth, K. J. ( 2005; ). Extension of the species Helicobacter bilis to include the reference strains of Helicobacter sp. flexispira taxa 2, 3 and 8 and Finnish canine and feline flexispira strains. Int J Syst Evol Microbiol 55, 891–898.[CrossRef]
    [Google Scholar]
  15. Hannula, M. & Hänninen, M. L. ( 2007; ). Phylogenetic analysis of Helicobacter species based on gyrB gene sequences. Int J Syst Evol Microbiol 57, 444–449.[CrossRef]
    [Google Scholar]
  16. Huson, D. H. & Bryant, D. ( 2006; ). Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23, 254–267.
    [Google Scholar]
  17. Huß, V. A. R., Festl, H. & Schleifer, K. H. ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef]
    [Google Scholar]
  18. Kiehlbauch, J. A., Brenner, D. J., Cameron, D. N., Steigerwalt, A. G., Makowski, J. M., Baker, C. N., Patton, C. M. & Wachsmuth, I. K. ( 1995; ). Genotypic and phenotypic characterization of Helicobacter cinaedi and Helicobacter fennelliae strains isolated from humans and animals. J Clin Microbiol 33, 2940–2947.
    [Google Scholar]
  19. Linz, B. & Schuster, S. C. ( 2007; ). Genomic diversity in Helicobacter and related organisms. Res Microbiol 158, 737–744.[CrossRef]
    [Google Scholar]
  20. Linz, B., Balloux, F., Moodley, Y., Manica, A., Liu, H., Roumagnac, P., Falush, D., Stamer, C., Prugnolle, F. & other authors ( 2007; ). An African origin for the intimate association between humans and Helicobacter pylori. Nature 445, 915–918.[CrossRef]
    [Google Scholar]
  21. Matic, I., Taddei, F. & Radman, M. ( 1996; ). Genetic barriers among bacteria. Trends Microbiol 4, 69–72.[CrossRef]
    [Google Scholar]
  22. Matsukura, N., Yokomuro, S., Yamada, S., Tajiri, T., Sundo, T., Hadama, T., Kamiya, S., Naito, Z. & Fox, J. G. ( 2002; ). Association between Helicobacter bilis in bile and biliary tract malignancies: H. bilis in bile from Japanese and Thai patients with benign and malignant diseases in the biliary tract. Jpn J Cancer Res 93, 842–847.[CrossRef]
    [Google Scholar]
  23. Meinersmann, R. J., Phillips, R. W. & Ladely, S. R. ( 2009; ). Inter- and intra-genomic heterogeneity of the intervening sequence in the 23S ribosomal RNA gene of Campylobacter jejuni and Campylobacter coli. Syst Appl Microbiol 32, 91–100.[CrossRef]
    [Google Scholar]
  24. Neefs, J. M., Van de Peer, Y., De Rijk, P., Chapelle, S. & De Wachter, R. ( 1993; ). Compilation of small ribosomal subunit RNA structures. Nucleic Acids Res 21, 3025–3049.[CrossRef]
    [Google Scholar]
  25. On, S. L., Harrington, C. S. & Atabay, H. I. ( 2003; ). Differentiation of Arcobacter species by numerical analysis of AFLP profiles and description of a novel Arcobacter from pig abortions and turkey faeces. J Appl Microbiol 95, 1096–1105.[CrossRef]
    [Google Scholar]
  26. Pabbaraju, K. & Sanderson, K. E. ( 2000; ). Sequence diversity of intervening sequences (IVSs) in the 23S ribosomal RNA in Salmonella spp. Gene 253, 55–66.[CrossRef]
    [Google Scholar]
  27. Pronk, L. M. & Sanderson, K. E. ( 2001; ). Intervening sequences in rrl genes and fragmentation of 23S rRNA in genera of the family Enterobacteriaceae. J Bacteriol 183, 5782–5787.[CrossRef]
    [Google Scholar]
  28. Recordati, C., Gualdi, V., Craven, M., Sala, L., Luini, M., Lanzoni, A., Rishniw, M., Simpson, K. W. & Scanziani, E. ( 2009; ). Spatial distribution of Helicobacter spp. in the gastrointestinal tract of dogs. Helicobacter 14, 180–191.[CrossRef]
    [Google Scholar]
  29. Rossi, M., Hänninen, M. L., Revez, J., Hannula, M. & Zanoni, R. G. ( 2008; ). Occurrence and species level diagnostics of Campylobacter spp., enteric Helicobacter spp. and Anaerobiospirillum spp. in healthy and diarrheic dogs and cats. Vet Microbiol 129, 304–314.[CrossRef]
    [Google Scholar]
  30. Stanley, J., Linton, D., Burnens, A. P., Dewhirst, F. E., Owen, R. J., Porter, A., On, S. L. & Costas, M. ( 1993; ). Helicobacter canis sp. nov., a new species from dogs: an integrated study of phenotype and genotype. J Gen Microbiol 139, 2495–2504.[CrossRef]
    [Google Scholar]
  31. Tamura, K., Dudley, J., Nei, M. & Kumar, S. ( 2007; ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef]
    [Google Scholar]
  32. Totten, P. A., Fennell, C. L., Tenover, F. C., Wezenberg, J. M., Perine, P. L., Stamm, W. E. & Holmes, K. K. ( 1985; ). Campylobacter cinaedi (sp. nov.) and Campylobacter fennelliae (sp. nov.): two new Campylobacter species associated with enteric disease in homosexual men. J Infect Dis 151, 131–139.[CrossRef]
    [Google Scholar]
  33. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  34. Zuker, M. ( 2003; ). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31, 3406–3415.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.016287-0
Loading
/content/journal/ijsem/10.1099/ijs.0.016287-0
Loading

Data & Media loading...

Supplements

. Secondary structure of 16S rRNA gene intervening sequences representing the different sequence families belong to the superfamilies I (a) and II (b).

IMAGE

. Pairwise alignments of the stem regions of superfamilies I and II.

IMAGE

. Phylogenetic network of combined and gene sequences of strains and sp. FL56 reconstructed in SplitsTree4 v4.10 using the neighbor-net algorithm. ATCC 51449 was used as an outgroup. Due to the long length of the branch, which would detract from the networked evolution within the group, the figure focuses on the portion of the neighbor-net graph concerning and sp. FL56.

IMAGE

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error