1887

Abstract

A novel thermophilic and lithoautotrophic sulfate-reducing archaeon was isolated from black rust formed on the steel surface of a borehole observatory (CORK 1026B) retrieved during IODP Expedition 301 on the eastern flank of Juan de Fuca Ridge, eastern Pacific Ocean. Cells of the strain were lobe-shaped or triangular. The optimum temperature, pH and NaCl concentration for growth were 75 °C, pH 7 and 2 % (w/v), respectively. The isolate was strictly anaerobic, growing lithoautotrophically on H and CO using sulfate, sulfite or thiosulfate as electron acceptors. Lactate and pyruvate could serve as alternative energy and carbon sources. The G+C content of the genomic DNA was 42 mol%. Phylogenetic analyses of the 16S rRNA gene indicated that the isolate was closely related to members of the family , with sequence similarities of 90.3–94.4 %. Physiological and molecular properties showed that the isolate represents a novel species of the genus . The name sp. nov. is proposed; the type strain is PM70-1 (=DSM 19444=JCM 14716).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.016105-0
2010-12-01
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/12/2745.html?itemId=/content/journal/ijsem/10.1099/ijs.0.016105-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J. H., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  2. Balch, W. E., Fox, G. E., Magrum, L. J., Woese, C. R. & Wolfe, R. S. ( 1979; ). Methanogens: reevaluation of a unique biological group. Microbiol Rev 43, 260–296.
    [Google Scholar]
  3. Burggraf, S., Jannasch, H. W., Nicolaus, B. & Stetter, K. O. ( 1990; ). Archaeoglobus profundus sp. nov., represents a new species within the sulfur-reducing Archaebacteria. Syst Appl Microbiol 13, 24–28.[CrossRef]
    [Google Scholar]
  4. Campanella, J. J., Bitincka, L. & Smalley, J. ( 2003; ). MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinformatics 4, 29–32.[CrossRef]
    [Google Scholar]
  5. Castresana, J. ( 2000; ). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17, 540–552.[CrossRef]
    [Google Scholar]
  6. Castro, H. F., Williams, N. H. & Ogram, A. ( 2000; ). Phylogeny of sulfate-reducing bacteria. FEMS Microbiol Ecol 31, 1–9.
    [Google Scholar]
  7. Cord-Ruwisch, R. ( 1985; ). A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 4, 33–36.[CrossRef]
    [Google Scholar]
  8. Cowen, J. P., Giovannoni, S. J., Kenig, F., Johnson, H. P., Butterfield, D., Rappé, M. S., Hutnak, M. & Lam, P. ( 2003; ). Fluids from aging ocean crust that support microbial life. Science 299, 120–123.[CrossRef]
    [Google Scholar]
  9. Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Dufayard, J.-F., Guindon, S., Lefort, V. & other authors ( 2008; ). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36, Web Server issue W465–W469.[CrossRef]
    [Google Scholar]
  10. Edwards, U., Rogall, T., Blöcker, H., Emde, M. & Böttger, E. C. ( 1989; ). Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17, 7843–7853.[CrossRef]
    [Google Scholar]
  11. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  12. Fisher, A. T., Urabe, T., Klaus, A. & Expedition 301 Scientists ( 2005; ). Proceedings of the Integrated Ocean Drilling Program, vol. 301. College Station TX: Integrated Ocean Drilling Program Management International, Inc. doi:10.2204/iodp.proc.301.2005
  13. Guindon, S. & Gascuel, O. ( 2003; ). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52, 696–704.[CrossRef]
    [Google Scholar]
  14. Hafenbradl, D., Keller, M., Dirmeier, R., Rachel, R., Roßnagel, P., Burggraf, S., Huber, H. & Stetter, K. O. ( 1996; ). Ferroglobus placidus gen. nov., sp. nov., a novel hyperthermophilic archaeum that oxidizes Fe2+ at neutral pH under anoxic conditions. Arch Microbiol 166, 308–314.[CrossRef]
    [Google Scholar]
  15. Hartzell, P. & Reed, D. W. ( 2006; ). The genus Archaeoglobus. In The Prokaryotes, 3rd edn, vol. 3, pp. 82–100. Edited by Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H. & Stackebrandt, E.. New York. : Springer.
    [Google Scholar]
  16. Huber, H., Jannasch, H., Rachel, R., Fuchs, T. & Stetter, K. O. ( 1997; ). Archaeoglobus veneficus sp. nov., a novel facultative chemolithoautotrophic hyperthermophilic sulfite reducer, isolated from abyssal black smokers. Syst Appl Microbiol 20, 374–380.[CrossRef]
    [Google Scholar]
  17. Huelsenbeck, J. P. & Ronquist, F. ( 2001; ). mrbayes: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755.[CrossRef]
    [Google Scholar]
  18. Itoh, T., Suzuki, K., Sanchez, P. C. & Nakase, T. ( 1999; ). Caldivirga maquilingensis gen. nov., sp. nov., a new genus of rod-shaped crenarchaeote isolated from a hot spring in the Philippines. Int J Syst Bacteriol 49, 1157–1163.[CrossRef]
    [Google Scholar]
  19. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 211–232. Edited by Munro, H. N.. New York. : Academic Press.
    [Google Scholar]
  20. Kashefi, K., Tor, J. M., Holmes, D. E., Gaw Van Praagh, C. V., Reysenbach, A.-L. & Lovley, D. R. ( 2002a; ). Geoglobus ahangari gen. nov., sp. nov., a novel hyperthermophilic archaeon capable of oxidizing organic acids and growing autotrophically on hydrogen with Fe(III) serving as the sole electron acceptor. Int J Syst Evol Microbiol 52, 719–728.[CrossRef]
    [Google Scholar]
  21. Kashefi, K., Holmes, D. E., Reysenbach, A.-L. & Lovley, D. R. ( 2002b; ). Use of Fe(III) as an electron acceptor to recover previously uncultured hyperthermophiles: isolation and characterization of Geothermobacterium ferrireducens gen. nov., sp. nov. Appl Environ Microbiol 68, 1735–1742.[CrossRef]
    [Google Scholar]
  22. Lovley, D. R. ( 2006; ). Dissimilatory Fe(III)- and Mn(IV)-reducing prokaryotes. In The Prokaryotes, 3rd edn, vol. 2, pp. 635–658. Edited by Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H. & Stackebrandt, E.. New York. : Springer.
    [Google Scholar]
  23. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S. & other authors ( 2004; ). arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef]
    [Google Scholar]
  24. Lysnes, K., Thorseth, I. H., Steinsbu, B. O., Øvreås, L., Torsvik, T. & Pedersen, R. B. ( 2004; ). Microbial community diversity in seafloor basalt from the Arctic spreading ridges. FEMS Microbiol Ecol 50, 213–230.[CrossRef]
    [Google Scholar]
  25. Mandel, M., Igambi, L., Bergendahl, J., Dodson, M. L., & Scheltgen, E. ( 1970; ). Correlation of melting temperature and cesium chloride buoyant density of bacterial deoxyribonucleic acid. J Bacteriol 101, 333–338.
    [Google Scholar]
  26. Marmur, J. ( 1963; ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. Methods Enzymol 6, 726–728.
    [Google Scholar]
  27. Massana, R., Murray, A. E., Preston, C. M. & DeLong, E. F. ( 1997; ). Vertical distribution and phylogenetic characterization of marine planktonic Archaea in the Santa Barbara Channel. Appl Environ Microbiol 63, 50–56.
    [Google Scholar]
  28. Mori, K., Maruyama, A., Urabe, T., Suzuki, K. & Hanada, S. ( 2008; ). Archaeoglobus infectus sp. nov., a novel thermophilic, chemolithoheterotrophic archaeon isolated from a deep-sea rock collected at Suiyo Seamount, Izu-Bonin Arc, western Pacific Ocean. Int J Syst Evol Microbiol 58, 810–816.[CrossRef]
    [Google Scholar]
  29. Nakagawa, S., Inagaki, F., Suzuki, Y., Steinsbu, B. O., Lever, M. A., Takai, K., Engelen, B., Sako, Y., Wheat, C. G. & Horikoshi, K., Integrated Ocean Drilling Program Expedition 301 Scientists ( 2006; ). Microbial community in black rust exposed to hot ridge flank crustal fluids. Appl Environ Microbiol 72, 6789–6799.[CrossRef]
    [Google Scholar]
  30. Pruesse, E., Quast, C., Knittel, K., Fuchs, B. M., Ludwig, W., Peplies, J. & Glöckner, F. O. ( 2007; ). silva: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with arb. Nucleic Acids Res 35, 7188–7196.[CrossRef]
    [Google Scholar]
  31. Reynolds, E. S. ( 1963; ). The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17, 208–212.[CrossRef]
    [Google Scholar]
  32. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  33. Shen, Y. & Buick, R. ( 2004; ). The antiquity of microbial sulfate reduction. Earth Sci Rev 64, 243–272.[CrossRef]
    [Google Scholar]
  34. Slobodkina, G. B., Kolganova, T. V., Querellou, J., Bonch-Osmolovskaya, E. A. & Slobodkin, A. I. ( 2009; ). Geoglobus acetivorans sp. nov., an iron(III)-reducing archaeon from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 59, 2880–2883.[CrossRef]
    [Google Scholar]
  35. Stackebrandt, E. & Ebers, J. ( 2006; ). Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33, 152–155.
    [Google Scholar]
  36. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  37. Stetter, K. O. ( 1988; ). Archaeoglobus fulgidus gen. nov., sp. nov. a new taxon of extremely thermophilic archaebacteria. Syst Appl Microbiol 10, 172–173.[CrossRef]
    [Google Scholar]
  38. Stetter, K. O., Lauerer, G., Thomm, M. & Neuner, A. ( 1987; ). Isolation of extremely thermophilic sulfate reducers: evidence for a novel branch of archaebacteria. Science 236, 822–824.[CrossRef]
    [Google Scholar]
  39. Stetter, K. O., Huber, R., Blöchl, E., Kurr, M., Eden, R. D., Fielder, M., Cash, H. & Vance, I. ( 1993; ). Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 365, 743–745.[CrossRef]
    [Google Scholar]
  40. Tamura, K., Dudley, J., Nei, M. & Kumar, S. ( 2007; ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef]
    [Google Scholar]
  41. Tor, J. M. & Lovley, D. R. ( 2001; ). Anaerobic degradation of aromatic compounds coupled to Fe(III) reduction by Ferroglobus placidus. Environ Microbiol 3, 281–287.[CrossRef]
    [Google Scholar]
  42. Tor, J. M., Kashefi, K. & Lovley, D. R. ( 2001; ). Acetate oxidation coupled to Fe(III) reduction in hyperthermophilic microorganisms. Appl Environ Microbiol 67, 1363–1365.[CrossRef]
    [Google Scholar]
  43. Widdel, F. & Bak, F. ( 1992; ). Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes, 2nd edn, pp. 3352–3378. Edited by Balows, A., Trüper, H. G., Dworkin, M., Harder, W. & Schleifer, K.-H.. New York. : Springer.
    [Google Scholar]
  44. Yarza, P., Richter, M., Peplies, J., Euzéby, J., Amann, R., Schleifer, K.-H., Ludwig, W., Glöckner, F. O. & Rosselló-Móra, R. ( 2008; ). The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31, 241–250.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.016105-0
Loading
/content/journal/ijsem/10.1099/ijs.0.016105-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error