1887

Abstract

Two extremely halophilic archaea, strains RO1-28 and RO1-22, were isolated from a marine solar saltern in Jiangsu, China. Both strains required at least 0.05 M Mg and 1.7 M NaCl for growth. They were able to grow over a pH range of 6.0–8.5 and a temperature range of 25–55 °C, with optimal pH of 7.0 and optimal temperature of 37–40 °C. Based on 16S rRNA gene sequence analysis, strains RO1-28 and RO1-22 were closely related to , the single species of the genus , with similarities of 94.0–95.2 %. The major polar lipids of the two strains were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and three glycolipids chromatographically identical to the glycolipids of JCM 13897. Both strains RO1-28 and RO1-22 had a DNA G+C content of 54.0 mol% (HPLC). The DNA–DNA hybridization value between the two strains was more than 70 % (92 %) and both strains showed low levels of DNA–DNA relatedness (32 % and 33 %) with JCM 13897. It was concluded that strains RO1-28 and RO1-22 represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is RO1-28 (=CGMCC 1.7737 =JCM 15771).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.015933-0
2010-05-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/5/1085.html?itemId=/content/journal/ijsem/10.1099/ijs.0.015933-0&mimeType=html&fmt=ahah

References

  1. Bardavid, R. E., Mana, L. & Oren, A. ( 2007; ). Haloplanus natans gen. nov., sp. nov., an extremely halophilic, gas-vacuolate archaeon isolated from Dead Sea–Red Sea water mixtures in experimental outdoor ponds. Int J Syst Evol Microbiol 57, 780–783.[CrossRef]
    [Google Scholar]
  2. Chun, J., Lee, J.-H., Jung, Y., Kim, M., Kim, S., Kim, B. K. & Lim, Y.-W. ( 2007; ). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57, 2259–2261.[CrossRef]
    [Google Scholar]
  3. Cui, H.-L., Zhou, P.-J., Oren, A. & Liu, S.-J. ( 2009; ). Intraspecific polymorphism of 16S rRNA genes in two halophilic archaeal genera, Haloarcula and Halomicrobium. Extremophiles 13, 31–37.[CrossRef]
    [Google Scholar]
  4. De Ley, J., Cattoir, H. & Reynaerts, A. ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef]
    [Google Scholar]
  5. Dussault, H. P. ( 1955; ). An improved technique for staining red halophilic bacteria. J Bacteriol 70, 484–485.
    [Google Scholar]
  6. Dyall-Smith, M. L. ( 2008; ). The Halohandbook: Protocols for haloarchaeal genetics. http://www.haloarchaea.com/resources/halohandbook/.
  7. Fitch, W. M. ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20, 406–416.[CrossRef]
    [Google Scholar]
  8. Gonzalez, C., Gutierrez, C. & Ramirez, C. ( 1978; ). Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 24, 710–715.[CrossRef]
    [Google Scholar]
  9. Gutiérrez, C. & González, C. ( 1972; ). Method for simultaneous detection of proteinase and esterase in extremely halophilic bacteria. Appl Microbiol 24, 516–517.
    [Google Scholar]
  10. Gutiérrez, M. C., Castillo, A. M., Kamekura, M. & Ventosa, A. ( 2008; ). Haloterrigena salina sp. nov., an extremely halophilic archaeon isolated from a salt lake. Int J Syst Evol Microbiol 58, 2880–2884.[CrossRef]
    [Google Scholar]
  11. Huß, V. A. R., Festl, H. & Schleifer, K. H. ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef]
    [Google Scholar]
  12. Kates, M. ( 1986; ). In Techniques of Lipidology, 2nd rev. edn, pp. 106–107, 187–188 and 251–254. Amsterdam: Elsevier.
  13. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  14. Ng, W. L., Yang, C. F., Halladay, J. T., Arora, A. & DasSarma, S. ( 1995; ). Protocol 25. Isolation of genomic and plasmid DNAs from Halobacterium halobium. In Archaea: a Laboratory Manual: Halophiles, pp. 179–180. Edited by S. DasSarma & E. M. Fleischmann. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  15. Oren, A. ( 2006; ). The order Halobacteriales. In The Prokaryotes: a Handbook on the Biology of Bacteria, 3rd edn, vol. 3, pp. 113–164. Edited by M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer & E. Stackebrandt. New York: Springer.
  16. Oren, A., Ventosa, A. & Grant, W. D. ( 1997; ). Proposed minimal standards for description of new taxa in the order Halobacteriales. Int J Syst Bacteriol 47, 233–238.[CrossRef]
    [Google Scholar]
  17. Purdy, K. J., Cresswell-Maynard, T. D., Nedwell, D. B., McGenity, T. J., Grant, W. D., Timmis, K. N. & Embley, T. M. ( 2004; ). Isolation of haloarchaea that grow at low salinities. Environ Microbiol 6, 591–595.[CrossRef]
    [Google Scholar]
  18. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  19. Savage, K. N., Krumholz, L. R., Oren, A. & Elshahed, M. S. ( 2007; ). Haladaptatus paucihalophilus gen. nov., sp. nov., a halophilic archaeon isolated from a low-salt, sulfide-rich spring. Int J Syst Evol Microbiol 57, 19–24.[CrossRef]
    [Google Scholar]
  20. Savage, K. N., Krumholz, L. R., Oren, A. & Elshahed, M. S. ( 2008; ). Halosarcina pallida gen. nov., sp. nov., a halophilic archaeon from a low-salt, sulfide-rich spring. Int J Syst Evol Microbiol 58, 856–860.[CrossRef]
    [Google Scholar]
  21. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  22. Tamura, K., Dudley, J., Nei, M. & Kumar, S. ( 2007; ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.015933-0
Loading
/content/journal/ijsem/10.1099/ijs.0.015933-0
Loading

Data & Media loading...

Supplements

Scanning electron micrograph of cells of strains RO1-28 (a) and RO1-22 (b).

IMAGE

Thin-layer chromatograms on Merck silica gel 60 F254 aluminium-backed thin-layer plates of the phospholipids (a) and glycolipids (b, c) from strain RO1-28 and related strains. Plate (a) was sprayed with the phosphate stain reagent (Kates, 1986) to detect phospholipids. Plate (b) was sprayed with sulfuric acid/ethanol (1:2, v/v) followed by heating at 150 °C for 3 min to detect phospholipids and glycolipids. Plate (c) was sprayed with 0.5% α-naphthol in methanol/water (1:1, v/v) and then with sulfuric acid/ethanol (1:1, v/v) followed by heating at 120 °C for 5 min to detect glycolipids only. Lanes: 1 and 7, CGMCC 1.2150 ; 2 and 8, JCM 13897 ; 3, JCM 14081 ; 4 and 9, strain RO1-28 ; 5, strain RO1-22; 6, CGMCC 1.2367 (=ATCC 33170). Circled spots are glycolipids of strain RO1-28 . PG, Phosphatidylglycerol; PGP-Me, phosphatidylglycerol phosphate methyl ester; PGS, phosphatidylglycerol sulfate; GL, glycolipid; F, first dimension of TLC; S, second dimension of TLC.

IMAGE

Phylogenetic tree derived from maximum-parsimony analysis based on 16S rRNA gene sequences showing the relationship between the members of the genus and related genera within the family . Only bootstrap values greater than 70% are shown (1000 replications). Bar, 50 expected changes per 1000 nucleotide positions.

IMAGE

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error