1887

Abstract

strain AI-S262 was isolated from the rhizoplane of neem seedlings in the Botanical garden of Tamilnadu Agricultural University, Coimbatore, India, and subjected to phenotypic, chemotaxonomic and genetic characterization. Cells of this strain were Gram-stain-positive, motile, non-spore-forming, short rods and formed light-yellow-pigmented colonies on nutrient agar. Strain AI-S262 contained MK-12 and MK-13 as the main respiratory quinones, anteiso-C, anteiso-C and iso-C as the predominant fatty acids, peptidoglycan-type B2 with glycolyl residues, and had a DNA G+C content of 69.5 mol%. A phylogenetic analysis based on 16S rRNA gene sequences showed 98.0–98.6 % pair-wise similarity with respect to close relatives in the genus . DNA–DNA hybridization experiments revealed a low level of DNA–DNA relatedness (less than 39%) between strain AI-S262 and its closest relatives. Data from DNA–DNA hybridization and phenotypic analyses supported the conclusion that strain AI-S262 represents a novel species in the genus , for which the name sp. nov. is proposed. The type strain is AI-S262 (=JCM 15681 =LMG 24772 =KCTC 19668).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.015800-0
2010-07-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/7/1687.html?itemId=/content/journal/ijsem/10.1099/ijs.0.015800-0&mimeType=html&fmt=ahah

References

  1. Atlas R. M. 1993; Handbook of Microbiological Media . pp 196–843 Edited by Parks L. C. Boca Raton, FL: CRC Press;
  2. Bakir M. A., Kudo T., Benno Y. 2008; Microbacterium hatanonis sp. nov., isolated as a contaminant of hairspray. Int J Syst Evol Microbiol 58:654–658 [CrossRef]
    [Google Scholar]
  3. Chanprame S., Todd J. J., Widholm J. M. 1996; Prevention of pink-pigmented methylotrophic bacteria ( Methylobacterium mesophilicum ) contamination of plant tissue cultures. Plant Cell Rep 16:222–225 [CrossRef]
    [Google Scholar]
  4. Collins M. D., Bradbury J. F. 1992; The genera Agromyces, Aureobacterium, Clavibacter, Curtobacterium , and Microbacterium . In The Prokaryotes pp 1355–1368 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. Berlin: Springer;
    [Google Scholar]
  5. Collins M. D., Jones D., Kroppenstedt R. M. 1983; Reclassification of Brevibacterium imperiale (Steinhaus) and ‘ Corynebacterium laevaniformans ’ (Dias and Bhat) in a redefined genus Microbacterium (Orla-Jensen), as Microbacterium imperiale comb. , nov. and Microbacterium laevaniformans nom. rev., comb. nov. Syst Appl Microbiol 465–78 [CrossRef]
    [Google Scholar]
  6. Evtushenko L. I., Takeuchi M. 2006; The family Microbacteriaceae . In The Prokaryotes: a Handbook on the Biology of Bacteria . , 3rd edn. vol 3 pp 1020–1098 Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E. New York: Springer;
  7. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  8. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  9. Ghosh S., Penterman J. N., Little R. D., Chavez R., Glick B. R. 2003; Three newly isolated plant growth-promoting bacilli facilitate the seedling growth of canola, Brassica campestris . Plant Physiol Biochem 41:277–281 [CrossRef]
    [Google Scholar]
  10. Glick B. R., Jacobson C. B., Schwarze M. M. K., Pasternak J. J. 1994; 1-Aminocyclopropane-1-carboxylic acid deaminase mutants of the plant growth promoting rhizobacterium Pseudomonas putida GR12–2 do not stimulate canola root elongation. Can J Microbiol 40:911–915 [CrossRef]
    [Google Scholar]
  11. Kouker G., Jaeger K.-E. 1987; Specific and sensitive plate assay for bacterial lipase. Appl Environ Microbiol 53:211–213
    [Google Scholar]
  12. Lee J.-S., Lee K. C., Park Y.-H. 2006; Microbacterium koreense sp. nov., from sea water in the South Sea of Korea. Int J Syst Evol Microbiol 56:423–427 [CrossRef]
    [Google Scholar]
  13. Legard D. E., McQuilken M. P., Whipps J. M., Fenlon J. S., Fermor T. R., Thompson I. P., Bailey M. J., Lynch J. M. 1994; Studies of seasonal changes in the microbial populations on the phyllosphere of spring wheat as a prelude to the release of a genetically modified microorganism. Agric Ecosyst Environ 50:87–101 [CrossRef]
    [Google Scholar]
  14. Li J., Ovakim D. H., Charles T. C., Glick B. R. 2000; An ACC deaminase minus mutant of Enterobacter cloacae UW4 no longer promotes root elongation. Curr Microbiol 41:101–105 [CrossRef]
    [Google Scholar]
  15. Madhaiyan M., Poonguzhali S., Ryu J., Sa T. 2006; Regulation of ethylene levels in canola ( Brassica campestris ) by 1-aminocyclopropane-1-carboxylate deaminase-containing Methylobacterium fujisawaense . Planta 224:268–278 [CrossRef]
    [Google Scholar]
  16. Madhaiyan M., Poonguzhali S., Sa T. 2007a; Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato ( Lycopersicon esculentum L.). Chemosphere 69:220–228 [CrossRef]
    [Google Scholar]
  17. Madhaiyan M., Kim B.-Y., Poonguzhali S., Kwon S.-W., Song M.-H., Ryu J.-H., Go S.-J., Koo B.-S., Sa T.-M. 2007b; Methylobacterium oryzae sp. nov., an aerobic, pink-pigmented, facultatively methylotrophic, 1-aminocyclopropane-1-carboxylate deaminase-producing bacterium isolated from rice. Int J Syst Evol Microbiol 57:326–331 [CrossRef]
    [Google Scholar]
  18. Madhaiyan M., Poonguzhali S., Kwon S.-W., Sa T.-M. 2009; Methylobacterium phyllosphaerae sp. nov., a pink-pigmented facultatively methylotrophic bacterium from rice. Int J Syst Evol Microbiol 59:22–27 [CrossRef]
    [Google Scholar]
  19. McInroy J. A., Kloepper J. W. 1995; Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil 173:337–342 [CrossRef]
    [Google Scholar]
  20. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  21. Orla-Jensen S. 1919 The Lactic Acid Bacteria Copenhagen: Høst and Son;
    [Google Scholar]
  22. Park M.-J., Kim M. K., Kim H.-B., Im W.-T., Yi T.-H., Soung N.-K., Yang D.-C. 2008; Microbacterium ginsengisoli sp. nov., a β -glucosidase producing bacterium isolated from soil of a ginseng field. Int J Syst Evol Microbiol 58:429–433 [CrossRef]
    [Google Scholar]
  23. Penrose D. M., Glick B. R. 2003; Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118:10–15 [CrossRef]
    [Google Scholar]
  24. Poonguzhali S., Madhaiyan M., Sa T. M. 2006; Cultivation-dependent characterization of rhizobacterial communities from field grown Chinese cabbage Brassica campestris ssp pekinensis and screening of traits for potential plant growth promotion. Plant Soil 286:167–180 [CrossRef]
    [Google Scholar]
  25. Reasoner D. J., Geldreich E. E. 1985; A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7
    [Google Scholar]
  26. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  27. Sasser M. 1990; Identification of bacteria through fatty acid analysis. In Methods in Phytobacteriology pp 199–204 Edited by Klement Z., Rudolph K., Sands D. C. Budapest: Akademiai Kiado;
    [Google Scholar]
  28. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477
    [Google Scholar]
  29. Seldin L., Dubnau D. 1985; Deoxyribonucleic acid homology among Bacillus polymyxa , Bacillus macerans , Bacillus azotofixans , and other nitrogen-fixing Bacillus strains. Int J Syst Bacteriol 35:151–154 [CrossRef]
    [Google Scholar]
  30. Shin Y. K., Lee J.-S., Chun C. O., Kim H.-J., Park Y.-H. 1996; Isoprenoid quinone profiles of Leclercia adecarboxylata KCTC 1036T . J Microbiol Biotechnol 6:68–69
    [Google Scholar]
  31. Shivaji S., Bhadra B., Rao R. S., Chaturvedi P., Pindi P. K., Raghukumar C. 2007; Microbacterium indicum sp. nov., isolated from a deep-sea sediment sample from the Chagos Trench. Indian Ocean. Int J Syst Evol Microbiol 57:1819–1822 [CrossRef]
    [Google Scholar]
  32. Skerman V. B. D., McGowan V., Sneath P. H. A. (editors) 1980; Approved lists of bacterial names. Int J Syst Bacteriol 30225–420 [CrossRef]
    [Google Scholar]
  33. Smith N. R., Gordon R. E., Clark F. E. 1952; Aerobic spore forming bacteria . Agricultural Monograph no: 16 Washington, DC: US Department of Agriculture;
    [Google Scholar]
  34. Takeuchi M., Hatano K. 1998a; Union of the genera Microbacterium Orla-Jensen and Aureobacterium Collins et al. in a redefined genus Microbacterium . Int J Syst Bacteriol 48:739–747 [CrossRef]
    [Google Scholar]
  35. Takeuchi M., Hatano K. 1998b; Proposal of six new species in the genus Microbacterium and transfer of Flavobacterium marinotypicum ZoBell and Upham to the genus Microbacterium as Microbacterium maritypicum comb. nov. Int J Syst Bacteriol 48:973–982 [CrossRef]
    [Google Scholar]
  36. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef]
    [Google Scholar]
  37. Ten L. N., Im W.-T., Kim M.-K., Kang M. S., Lee S.-T. 2004; Development of a plate technique for screening of polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates. J Microbiol Methods 56:375–382 [CrossRef]
    [Google Scholar]
  38. Thompson I. P., Bailey M. J., Fenlon J. S., Fermor T. R., Lilley A. K., Lynch J. M., McCormack P. J., McQuilken M. P., Purdy K. J. other authors 1993; Quantitative and qualitative seasonal changes in the microbial community from the phyllosphere of sugar beet ( Beta vulgaris ). Plant Soil 150:177–191 [CrossRef]
    [Google Scholar]
  39. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  40. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.015800-0
Loading
/content/journal/ijsem/10.1099/ijs.0.015800-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error