sp. nov., an exopolysaccharide-producing bacterium isolated from salt mine sediment Free

Abstract

A Gram-negative, moderately halophilic, non-motile, aerobic bacterium, designated strain YIM D10, was isolated from a salt mine sediment sample from Yunnan, south-west China. The strain grew optimally in the presence of 3–8 % NaCl and at 28 °C and pH 7.5. The polar lipid profile of strain YIM D10 comprised diphosphatidylglycerol, an unknown phospholipid and two unknown aminolipids. The major cellular fatty acids were C 7 (30.5 %), C cyclo 8 (29.3 %) and C (13.2 %). The respiratory quinone was ubiquinone 10 (Q-10). The genomic DNA G+C content was 65.4 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain YIM D10 was closely related to RS.Sph.026 (96.8 % gene sequence similarity). Results confirmed the placement of isolate YIM D10 within the genus . However, DNA–DNA hybridization between strain YIM D10 and the type strain of the only recognized species of the genus , RS.Sph.026, was 16.7 %, showing clearly that the isolate constitutes a new genospecies. Strain YIM D10 could be clearly differentiated from and other phylogenetic neighbours on the basis of some phenotypic, genotypic and chemotaxonomic features. Therefore, strain YIM D10 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed; the type strain is YIM D10 (=DSM 21202=CCTCC AA 208035).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.015735-0
2010-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/8/1750.html?itemId=/content/journal/ijsem/10.1099/ijs.0.015735-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  2. Blenden D. C., Goldberg H. S. 1965; Silver impregnation stain for Leptospira and flagella. J Bacteriol 89:899–900
    [Google Scholar]
  3. Collins M. D., Jones D. 1980; Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. J Appl Bacteriol 48:459–470 [CrossRef]
    [Google Scholar]
  4. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230 [CrossRef]
    [Google Scholar]
  5. Cui X.-L., Mao P.-H., Zeng M., Li W.-J., Zhang L.-P., Xu L.-H., Jiang C.-L. 2001; Streptomonospora salina gen. nov., sp. nov. a new member of the family Nocardiopsaceae . Int J Syst Evol Microbiol 51:357–363
    [Google Scholar]
  6. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  7. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  8. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  9. Gregersen T. 1978; Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5:123–127 [CrossRef]
    [Google Scholar]
  10. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  11. Jahnke K. D. 1992; basic computer program for evaluation of spectroscopic DNA renaturation data from GILFORD SYSTEM 2600 spectrophotometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73 [CrossRef]
    [Google Scholar]
  12. Kovacs N. 1956; Identification of Pseudomonas pyocyanea by oxidase reaction. Nature 178:703–704
    [Google Scholar]
  13. Manca M. C., Lama L., Improta R., Esposito E., Gambacorta A., Nicolaus B. 1996; Chemical composition of two exopolysaccharides from Bacillus thermoantarcticus . Appl Environ Microbiol 62:3265–3269
    [Google Scholar]
  14. Martínez-Cánovas M. J., Quesada E., Martínez-Checa F., del Moral A., Béjar V. 2004; Salipiger mucescens gen. nov., sp. nov. a moderately halophilic, exopolysaccharide-producing bacterium isolated from hypersaline soil, belonging to the α-Proteobacteria . Int J Syst Evol Microbiol 54:1735–1740 [CrossRef]
    [Google Scholar]
  15. Martínez-Checa F., Béjar V., Martínez-Cánovas M. J., Llamas I., Quesada E. 2005; Halomonas almeriensis sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium from Cabo de Gata, Almería, south-east Spain. Int J Syst Evol Microbiol 55:2007–2011 [CrossRef]
    [Google Scholar]
  16. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  17. Minnikin D. E., Collins M. D., Goodfellow M. 1979; Fatty acid and polar lipid composition in the classification of Cellulomonas , Oerskovia and related taxa. J Appl Bacteriol 47:87–95 [CrossRef]
    [Google Scholar]
  18. Richard C., Kiredjian M. 1995 Laboratory Methods for the Identification of Strictly Aerobic Gram-negative Bacilli Paris: Institut Pasteur;
    [Google Scholar]
  19. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  20. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20: 16
    [Google Scholar]
  21. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology . pp 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
  22. Suzuki M., Nakagawa Y., Harayama S., Yamamoto S. 2001; Phylogenetic analysis and taxonomic study of marine Cytophaga -like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb.nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp.nov. and Tenacibaculum amylolyticum sp. nov. Int J Syst Evol Microbiol 51:1639–1652 [CrossRef]
    [Google Scholar]
  23. Tamaoka J., Katayama-Fujimura Y., Kuraishi H. 1983; Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 54:31–36 [CrossRef]
    [Google Scholar]
  24. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: Molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef]
    [Google Scholar]
  25. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  26. Ventosa A., Nieto J. J., Oren A. 1998; Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544
    [Google Scholar]
  27. Zeevi Ben Yosef D., Ben-Dov E., Kushmaro A. 2008; Amorphus coralli gen. nov., sp. nov. a marine bacterium isolated from coral mucus, belonging to the order Rhizobiales . Int J Syst Evol Microbiol 582704–2709 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.015735-0
Loading
/content/journal/ijsem/10.1099/ijs.0.015735-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed