1887

Abstract

A Gram-negative, rod-shaped, sulfate-reducing bacterium (strain JS_SRB250Lac) was isolated from a tidal sand-flat in the German Wadden Sea. 16S rRNA gene sequence analysis showed that strain JS_SRB250Lac belonged to the (), with MSL86 being the closest recognized relative (94.2 % similarity). Higher similarity (96.6 %) was shared with ‘’ IS4, but this name has not been validly published. The affiliation of strain JS_SRB250Lac to the genus was further supported by analysis of gene sequences and shared physiological characteristics, in particular the broad range of organic electron donors used for sulfate reduction. Compared with MSL86, strain JS_SRB250Lac additionally utilized butyrate and succinate and grew chemolithoautotrophically with hydrogen as an electron donor. CO dehydrogenase activity was demonstrated, indicating that the reductive acetyl-CoA pathway (Wood–Ljungdahl pathway) was used for CO fixation. Results of cellular fatty acid analysis allowed chemotaxonomic differentiation of strain JS_SRB250Lac from MSL86 by the presence of C cyclo and the absence of hydroxy and unsaturated branched-chain fatty acids. Based on phylogenetic, physiological and chemotaxonomic characteristics, strain JS_SRB250Lac represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is JS_SRB250Lac (=DSM 19738 =NBRC 103921).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.015644-0
2010-07-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/7/1626.html?itemId=/content/journal/ijsem/10.1099/ijs.0.015644-0&mimeType=html&fmt=ahah

References

  1. Beck M., Dellwig O., Kolditz K., Freund H., Liebezeit G., Schnetger B., Brumsack H.-J. 2007; In situ pore water sampling in deep intertidal flat sediments. Limnol Oceanogr Methods 5:136–144 [CrossRef]
    [Google Scholar]
  2. Billerbeck M., Werner U., Bosselmann K., Walpersdorf E., Huettel M. 2006a; Nutrient release from an exposed intertidal sand flat. Mar Ecol Prog Ser 316:35–51 [CrossRef]
    [Google Scholar]
  3. Billerbeck M., Werner U., Polerecky L., Walpersdorf E., de Beer D., Huettel M. 2006b; Surficial and deep pore water circulation governs spatial and temporal scales of nutrient recycling in intertidal sand flat sediment. Mar Ecol Prog Ser 326:61–76 [CrossRef]
    [Google Scholar]
  4. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye-binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  5. Cord-Ruwisch R. 1985; A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 4:33–36 [CrossRef]
    [Google Scholar]
  6. D’Andrea A. F., Aller R. C., Lopez G. R. 2002; Organic matter flux and reactivity on a South Carolina sandflat: the impacts of porewater advection and macrobiological structures. Limnol Oceanogr 47:1056–1070 [CrossRef]
    [Google Scholar]
  7. de Beer D., Wenzhöfer F., Ferdelman T. G., Boehme S. E., Huettel M., van Beusekom J. E. E., Böttcher M. E., Musat N., Dubilier N. 2005; Transport and mineralization rates in North Sea sandy intertidal sediments, Sylt-Rømø Basin, Waddensea. Limnol Oceanogr 50:113–127 [CrossRef]
    [Google Scholar]
  8. Dinh H. T. 2003; Microbiological study of the anaerobic corrosion of iron . PhD thesis University of Bremen; Bremen, Germany:
  9. Dinh H. T., Kuever J., Mußmann M., Hassel A. W., Stratmann M., Widdel F. 2004; Iron corrosion by novel anaerobic microorganisms. Nature 427:829–832 [CrossRef]
    [Google Scholar]
  10. Dunkelblum E., Tan S. H., Silk P. J. 1985; Double-bond location in mono-unsaturated fatty acids by dimethyl disulfide derivatization and mass spectrometry: application to analysis of fatty acids in pheromone glands of four Lepidoptera. J Chem Ecol 11:265–277 [CrossRef]
    [Google Scholar]
  11. Galushko A. S., Schink B. 2000; Oxidation of acetate through reactions of the citric acid cycle by Geobacter sulfurreducens in pure culture and in syntrophic coculture. Arch Microbiol 174:314–321 [CrossRef]
    [Google Scholar]
  12. Gittel A., Mußmann M., Sass H., Cypionka H., Könneke M. 2008; Identity and abundance of active sulfate-reducing bacteria in deep tidal flat sediments determined by directed cultivation and CARD-FISH analysis. Environ Microbiol 10:2645–2658 [CrossRef]
    [Google Scholar]
  13. Huettel M., Rusch A. 2000; Transport and degradation of phytoplankton in permeable sediment. Limnol Oceanogr 45:534–549 [CrossRef]
    [Google Scholar]
  14. Ishii K., Mußmann M., MacGregor B. J., Amann R. 2004; An improved fluorescence in situ hybridization protocol for the identification of bacteria and archaea in marine sediments. FEMS Microbiol Ecol 50:203–212 [CrossRef]
    [Google Scholar]
  15. Kjeldsen K. U., Kjellerup B. V., Egli K., Frølund B., Nielsen P. H., Ingvorsen K. 2007; Phylogenetic and functional diversity of bacteria in biofilms from metal surfaces of an alkaline district heating system. FEMS Microbiol Ecol 61:384–397 [CrossRef]
    [Google Scholar]
  16. Kuever J., Könneke M., Galushko A., Drzyzga O. 2001; Reclassification of Desulfobacterium phenolicum as Desulfobacula phenolica comb. nov and description of strain SaxT as Desulfotignum balticum gen. nov., sp. nov.. Int J Syst Evol Microbiol 51:171–177
    [Google Scholar]
  17. Loy A., Lehner A., Lee N., Adamczyk J., Meier H., Ernst J., Schleifer K. H., Wagner M. 2002; Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Appl Environ Microbiol 68:5064–5081 [CrossRef]
    [Google Scholar]
  18. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar Buchner A., Lai T., Steppi S. other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef]
    [Google Scholar]
  19. Meyer B., Kuever J. 2007; Phylogeny of the alpha and beta subunits of the dissimilatory adenosine-5′-phosphosulfate (APS) reductase from sulfate-reducing prokaryotes – origin and evolution of the dissimilatory sulfate-reduction pathway. Microbiology 153:2026–2044 [CrossRef]
    [Google Scholar]
  20. Murray R. G. E., Doetsch R. N., Robinow F. 1994; Determinative and cytological light microscopy. In Methods for General and Molecular Bacteriology . pp 21–41 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
  21. Musat N., Werner U., Knittel K., Kolb S., Dodenhof T., van Beusekom J. E. E., de Beer D., Dubilier N., Amann R. 2006; Microbial community structure of sandy intertidal sediments in the North Sea, Sylt-Rømø Basin, Wadden Sea. Syst Appl Microbiol 29:333–348 [CrossRef]
    [Google Scholar]
  22. Røy H., Lee J. S., Jansen S., de Beer D. 2008; Tide-driven deep pore-water flow in intertidal sand flats. Limnol Oceanogr 53:1521–1530 [CrossRef]
    [Google Scholar]
  23. Sasser M. 1997 Identification of bacteria by gas chromatography of cellular fatty acids , MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  24. Suzuki D., Ueki A., Amaishi A., Ueki K. 2007; Desulfopila aestuarii gen. nov., sp. nov., a Gram-negative, rod-like, sulfate-reducing bacterium isolated from an estuarine sediment in Japan. Int J Syst Evol Microbiol 57520–526 [CrossRef]
    [Google Scholar]
  25. Thauer R. K. 1988; Citric-acid cycle, 50 years on: modifications and an alternative pathway in anaerobic bacteria. Eur J Biochem 176:497–508 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.015644-0
Loading
/content/journal/ijsem/10.1099/ijs.0.015644-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error