sp. nov., isolated from activated sludge Free

Abstract

The taxonomic position of a Gram-positive, non-spore-forming strain, designated CAU 59, from activated sludge was investigated. Colony morphology, biochemical tests and chemotaxonomic investigations revealed that strain CAU 59 possessed the characteristics of the genus . Comparative 16S rRNA gene sequence analysis showed sequence divergence values between strain CAU 59 and other described species of more than 3.6 %, and the strain formed a hitherto-unknown subline within the genus . DNA–DNA hybridization studies showed that strain CAU 59 displayed 20.9 % relatedness to its closest phylogenetic neighbour, DSM 20419. The DNA G+C content was 66.2 mol%. The phenotypic, chemotaxonomic and genotypic data indicated that strain CAU 59 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is CAU 59 (=KCTC 22691 =CCUG 58142).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.015552-0
2010-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/7/1672.html?itemId=/content/journal/ijsem/10.1099/ijs.0.015552-0&mimeType=html&fmt=ahah

References

  1. Behrendt U., Ulrich A., Schumann P., Naumann D., Suzuki K. 2002; Diversity of grass-associated Microbacteriaceae isolated from the phyllosphere and litter layer after mulching the sward; polyphasic characterization of Subtercola pratensis sp.nov., Curtobacterium herbarum sp. nov. and Plantibacter flavus gen. nov.,sp. nov. Int J Syst Evol Microbiol 52:1441–1454 [CrossRef]
    [Google Scholar]
  2. Chun J., Lee J. H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [CrossRef]
    [Google Scholar]
  3. Collins M. D., Bradbury J. F. 1992; The genera Agromyces, Aureobacterium, Clavibacter, Curtobacterium, and Microbacterium . In The Prokaryotes , 2nd edn. pp 1355–1368 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  4. Collins M. D., Jones D. 1981; The distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45:316–354
    [Google Scholar]
  5. Cowan S. T., Steel K. J. 1965 Manual for the Identification of Medical Bacteria London: Cambridge University Press;
    [Google Scholar]
  6. Doetsch R. N. 1981; Determinative methods of light microscopy. In Manual of Methods for General Bacteriology . pp 21–33 Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. H. Washington, DC: American Society for Microbiology;
  7. Evtushenko L. I., Takeuchi M. 2003; The family Microbacteriaceae . In The Prokaryotes: a Handbook on the Biology of Bacteria . , 3rd edn. vol 3 pp 1020–1098 Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E. New York: Springer;
  8. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  9. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  10. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  11. Felsenstein J. 1989; phylip – phylogeny inference package (version 3.2). Cladistics 5:164–166
    [Google Scholar]
  12. Fitch W. M., Margoliash E. 1967; Construction of phylogenetic trees. Science 155:279–284 [CrossRef]
    [Google Scholar]
  13. Gonzalez J. M., Saiz-Jimenez C. 2002; A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 4:770–773 [CrossRef]
    [Google Scholar]
  14. Gordon R. E., Mihm J. M. 1962; Identification of Nocardia caviae (Erikson) nov. comb. Ann N Y Acad Sci 98:628–636
    [Google Scholar]
  15. Goris J., Suzuki K., De Vos P., Nakase T., Kersters K. 1998; Evaluation of a microplate DNA–DNA hybridization method compared with the initial renaturation method. Can J Microbiol 44:1148–1153 [CrossRef]
    [Google Scholar]
  16. Groth I., Schumann P., Weiss N., Martin K., Rainey F. A. 1996; Agrococcus jenensis gen. nov., sp. nov. a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46:234–239 [CrossRef]
    [Google Scholar]
  17. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol. 3 pp 21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  18. Kim M. K., Jung H.-Y. 2009; Pseudoclavibacter soli sp. nov., a β -glucosidase-producing bacterium. Int J Syst Evol Microbiol 59:835–838 [CrossRef]
    [Google Scholar]
  19. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207
    [Google Scholar]
  20. Lányí B. 1987; Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19:1–67
    [Google Scholar]
  21. Lin Y.-C., Uemori K., de Briel D. A., Arunpairojana V., Yokota A. 2004 Zimmermannella helvola gen. nov., sp. nov., Zimmermannella alba sp. nov., Zimmermannella bifida sp. nov., Zimmermannella faecalis sp. nov. and Leucobacter albus sp. nov., novel members of the family Microbacteriaceae . Int J Syst Evol Microbiol 54, 1669–1676 [CrossRef]
  22. Lochhead A. G. 1995; Brevibacterium helvolum (Zimmermann) comb. nov. Int Bull Bact Nomen Taxon 5: 115
    [Google Scholar]
  23. MacKenzie S. L. 1987; Gas chromatographic analysis of amino acids as the N -heptafluorobutyryl isobutyl esters. J Assoc Off Anal Chem 70:151–160
    [Google Scholar]
  24. Manaia C. M., Nunes O. C., Nogales B. 2003; Caenibacterium thermophilum gen. nov., sp. nov. isolated from a thermophilic aerobic digester of municipal sludge. Int J Syst Evol Microbiol 53:1375–1382 [CrossRef]
    [Google Scholar]
  25. Manaia C. M., Nogales B., Weiss N., Nunes O. C. 2004; Gulosibacter molinativorax gen. nov., sp. nov., a molinate-degrading bacterium, and classification of ‘ Brevibacterium helvolum ’ DSM 20419 as Pseudoclavibacter helvolus gen. nov., sp. nov.. Int J Syst Evol Microbiol 54:783–789 [CrossRef]
    [Google Scholar]
  26. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  27. Minnikin D. E., Hutchinson I. G., Caldicott A. B., Goodfellow M. 1980; Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr A 188:221–233 [CrossRef]
    [Google Scholar]
  28. Nam S. W., Kim W., Chun J., Goodfellow M. 2004; Tsukamurella pseudospumae sp. nov., a novel actinomycete isolated from activated sludge foam. Int J Syst Evol Microbiol 54:1209–1212 [CrossRef]
    [Google Scholar]
  29. Park Y. H., Suzuki K., Yim D. G., Lee K. C., Kim E., Yoon J., Kim S., Kho Y. H., Goodfellow M., Komagata K. 1993; Suprageneric classification of peptidoglycan group B actinomycetes by nucleotide sequencing of 5S ribosomal RNA. Antonie van Leeuwenhoek 64:307–313
    [Google Scholar]
  30. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  31. Schleifer K. H. 1985; Analysis of the chemical composition and primary structure of murein. Methods Microbiol 18:123–156
    [Google Scholar]
  32. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477
    [Google Scholar]
  33. Sheridan P. P., Loveland-Curtze J., Miteva V. I., Brenchley J. E. 2003; Rhodoglobus vestalii gen. nov., sp. nov. a novel psychrophilic organism isolated from an Antarctic Dry Valley lake. Int J Syst Evol Microbiol 53:985–994 [CrossRef]
    [Google Scholar]
  34. Smibert R. M., Krieg N. R. 1981; General characterization. In Manual of Methods for General Microbiology pp 409–443 Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  35. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology . pp 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
  36. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  37. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  38. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  39. Zimmermann O. E. R. 1890; Die Bakterien unserer Trink- und Nutzwasser, inabesondere des Wassers der Chemnitzer Wasserleitung. pp 53–154 Eleventh Report Naturwiss Ges Chemnitz;
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.015552-0
Loading
/content/journal/ijsem/10.1099/ijs.0.015552-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed