1887

Abstract

Two Gram-negative, motile, rod-shaped bacteria (strains 5317J-18 and 5414S-25) were isolated from air samples collected in the Jeju Island and Suwon region of Korea, respectively. Phylogenetically, strain 5317J-18 was grouped with the genus with byr23-80 as the closest relative (98.8 % sequence similarity). Strain 5414S-25 was affiliated with the genus with CCUG 38318 as the closest relative (98.8 % sequence similarity). The mean DNA–DNA relatedness values between strain 5317J-18 and DSM 18925 and DSM 18055 were 43 and 36 %, respectively. The mean DNA–DNA hybridization values between strain 5414S-25 and KACC 13771, DSM 18925, DSM 16850, KACC 13770, DSM 18055, DSM 17473 and DSM 17472 ranged from 33 to 42 %. Both novel strains had ubiquinone Q-8 as the predominant isoprenoid quinone and summed feature 3 (comprising iso-C 2-OH and/or C 7) and C as the major fatty acids. Both strains also showed similar polar lipid profiles with phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol as the major polar lipids. The DNA G+C contents of strains 5317J-18 and 5414S-25 were 66.1 and 67.8 %, respectively. On the basis of their phenotypic, chemotaxonomic and genotypic characteristics, the new strains represent novel species in the genera and . Strain 5317J-18 (=KACC 12634=DSM 21309) is proposed as the type strain of sp. nov. and strain 5414S-25 (=KACC 12635=DSM 21311) is proposed as the type strain of sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.015479-0
2010-08-01
2021-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/8/1938.html?itemId=/content/journal/ijsem/10.1099/ijs.0.015479-0&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. (editors) 1987; Current Protocols in Molecular Biology . New York: Greene/Wiley Interscience;
  2. Chun J., Lee J. H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [CrossRef]
    [Google Scholar]
  3. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  4. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  5. Gallego V., Sánchez-Porro C., García M. T., Ventosa A. 2006; Massilia aurea sp. nov., isolated from drinking water. Int J Syst Evol Microbiol 56:2449–2453 [CrossRef]
    [Google Scholar]
  6. Kämpfer P., Falsen E., Busse H. J. 2008; Naxibacter varians sp. nov. and Naxibacter haematophilus sp. nov., and emended description of the genus Naxibacter . Int J Syst Evol Microbiol 58:1680–1684 [CrossRef]
    [Google Scholar]
  7. Kluge A. G., Farris J. S. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32 [CrossRef]
    [Google Scholar]
  8. Kumar S., Tamura K., Nei M. 2004; mega3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  9. La Scola B., Birtles R. J., Mallet M. N., Raoult D. 1998; Massilia timonae gen. nov., sp. nov. isolated from blood of an immunocompromised patient with cerebellar lesions. J Clin Microbiol 36:2847–2852
    [Google Scholar]
  10. Lindquist D., Murrill D., Burran W. P., Winans G., Janda J. M., Probert W. 2003; Characteristics of Massilia timonae and Massilia timonae -like isolates from human patients, with an emended description of the species. J Clin Microbiol 41:192–196 [CrossRef]
    [Google Scholar]
  11. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  12. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [CrossRef]
    [Google Scholar]
  13. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  14. Sasser M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids Newark, DE: MIDI Inc;
    [Google Scholar]
  15. Seldin L., Dubnau D. 1985; Deoxyribonucleic acid homology among Bacillus polymyxa , Bacillus macerans , Bacillus azotofixans , and other nitrogen-fixing Bacillus strains. Int J Syst Bacteriol 35:151–154 [CrossRef]
    [Google Scholar]
  16. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology . pp 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
  17. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  18. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  19. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703
    [Google Scholar]
  20. Weon H. Y., Kim B. Y., Son J. A., Jang H. B., Hong S. K., Go S. J., Kwon S. W. 2008; Massilia aerilata sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 58:1422–1425 [CrossRef]
    [Google Scholar]
  21. Weon H. Y., Kim B. Y., Hong S. B., Jeon Y. A., Koo B. S., Kwon S. W., Stackebrandt E. 2009 Massilia niabense sp. nov. and Massilia niastense sp. nov., isolated from air samples. Int J Syst Evol Microbiol 59, 1656–1660. [CrossRef]
  22. Xu P., Li W. J., Tang S. K., Zhang Y. Q., Chen G.-Z., Chen H.-H., Xu L. H., Jiang C. L. 2005 Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘ Oxalobacteraceae ’ isolated from China. Int J Syst Evol Microbiol 55, 1149–1153 [CrossRef]
  23. Zhang Y.-Q., Li W.-J., Zhang K.-Y., Tian X.-P., Jiang Y., Xu L.-H., Jiang C.-L., Lai R. 2006 Massilia dura sp. nov., Massilia albidiflava sp. nov., Massilia plicata sp. nov. and Massilia lutea sp. nov., isolated from soils in China. Int J Syst Evol Microbiol 56, 459–463. [CrossRef]
  24. Zul D., Wanner G., Overmann J. 2008; Massilia brevitalea sp. nov., a novel betaproteobacterium isolated from lysimeter soil. Int J Syst Evol Microbiol 58:1245–1251 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.015479-0
Loading
/content/journal/ijsem/10.1099/ijs.0.015479-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error