1887

Abstract

Two facultatively anaerobic, budding bacterial strains, designated W1215-PCA4 and SRNK-1, were isolated from water from Lake Michigan, USA. The two strains showed identical ERIC-PCR-generated genomic fingerprints and shared 99.9 % 16S rRNA gene sequence similarity. Strain W1215-PCA4 showed highest 16S rRNA gene sequence similarities to VKM B-1479 (95.8 %), DSM 16812 (95.1 %), MAFF 210191 (96.0 %), G24103 (95.4 %), BCRC 17578 (95.7 %) and DSM 17916 (95.8 %). Data suggested that the two strains were members of a single novel species of the genus . The major cellular fatty acids of the two isolates were C 7, C cyclo 8 and C. Their polar lipid profiles were highly similar to that of DSM 5896. The primary quinone was ubiquinone Q-10, with minor amounts of Q-9 and Q-11. s-Homospermidine was the predominant polyamine, with putrescine present in moderate amounts. The two strains were identical in terms of their biochemical and physiological traits, but were distinguishable from other species of the genus . Hence, the description of a novel species in this genus appears to be justified. The name sp. nov. is proposed; the type strain is W1215-PCA4 (=DSM 19619=NRRL B-51088).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.014977-0
2010-07-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/7/1570.html?itemId=/content/journal/ijsem/10.1099/ijs.0.014977-0&mimeType=html&fmt=ahah

References

  1. Albert, R. A., Archambault, J., Rosselló-Mora, R., Tindall, B. J. & Matheny, M. ( 2005; ). Bacillus acidicola sp. nov., a novel mesophilic, acidophilic Bacillus species isolated from acidic Sphagnum peat bogs in Wisconsin. Int J Syst Evol Microbiol 55, 2125–2130.[CrossRef]
    [Google Scholar]
  2. Albert, R. A., Archambault, J., Lempa, M., Hurst, B., Richardson, C., Gruenloh, S., Duran, M., Worliczek, H. L., Huber, B. E. & other authors ( 2007; ). Proposal of Viridibacillus gen. nov. and reclassification of Bacillus arvi, Bacillus arenosi and Bacillus neidei as Viridibacillus arvi gen. nov., comb. nov., Viridibacillus arenosi comb. nov. and Viridibacillus neidei comb. nov. Int J Syst Evol Microbiol 57, 2729–2737.[CrossRef]
    [Google Scholar]
  3. Allgaier, M. & Grossart, H. P. ( 2006; ). Diversity and seasonal dynamics of Actinobacteria populations in four lakes in northeastern Germany. Appl Environ Microbiol 72, 3489–3497.[CrossRef]
    [Google Scholar]
  4. Altenburger, P., Kämpfer, P., Makristathis, A., Lubitz, W. & Busse, H.-J. ( 1996; ). Classification of bacteria isolated from a medieval wall painting. J Biotechnol 47, 39–52.[CrossRef]
    [Google Scholar]
  5. Auran, T. B. & Schmidt, E. L. ( 1972; ). Similarities between Hyphomicrobium and Nitrobacterium with respect to fatty acids. J Bacteriol 109, 450–451.
    [Google Scholar]
  6. Busse, H.-J. & Auling, G. ( 1988; ). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 11, 1–8.[CrossRef]
    [Google Scholar]
  7. Carvalho, M. F., De Marco, P., Duque, A. F., Pacheco, C. C., Janssen, D. B. & Castro, P. M. L. ( 2008; ). Labrys portucalensis sp. nov., a fluorobenzene-degrading bacterium isolated from an industrial contaminated sediment in northern Portugal. Int J Syst Evol Microbiol 58, 692–698.[CrossRef]
    [Google Scholar]
  8. Chou, Y.-J., Elliot, G. N., James, E. K., Lin, K.-Y., Chou, J.-H., Sheu, S.-Y., Sheu, D.-S., Sprent, J. I. & Chen, W.-M. ( 2007; ). Labrys neptuniae sp. nov., isolated from root nodules of the aquatic legume Neptunia oleracea. Int J Syst Evol Microbiol 57, 577–581.[CrossRef]
    [Google Scholar]
  9. Cottrell, M. T., Waidner, L. A., Yu, L. Y. & Kirchman, D. L. ( 2005; ). Bacterial diversity of metagenomic and PCR libraries from the Delaware River. Environ Microbiol 7, 1883–1895.[CrossRef]
    [Google Scholar]
  10. Eiler, A. & Bertilsson, S. ( 2004; ). Composition of freshwater bacterial communities associated with cyanobacterial blooms in four Swedish lakes. Environ Microbiol 6, 1228–1243.[CrossRef]
    [Google Scholar]
  11. Fritz, I., Strömpl, C. & Abraham, W. R. ( 2004; ). Phylogenetic relationships of the genera Stella, Labrys, and Angulomicrobium within the ‘Alphaproteobacteria’ and description of Angulomicrobium amanitiforme sp. nov. Int J Syst Evol Microbiol 54, 651–657.[CrossRef]
    [Google Scholar]
  12. Hamana, K. & Takeuchi, M. ( 1998; ). Polyamine profiles as chemotaxonomic markers within alpha, beta, gamma, delta, and epsilon subclasses of class Proteobacteria: distribution of 2-hydroxyputrescine and homospermidine. Microbiol Cult Collect 14, 1–14.
    [Google Scholar]
  13. Hamana, K., Sakamoto, A., Tachiyanagi, S., Terauchi, E. & Takeuchi, M. ( 2003; ). Polyamine profiles of some members of the alpha subclass of the class Proteobacteria: Polyamine analysis of twenty recently described genera. Microbiol Cult Collect 19, 13–21.
    [Google Scholar]
  14. Hamana, K., Sato, W., Gouma, K., Yu, J., Ino, Y., Umemura, Y., Mochizuki, C., Takatsuka, K., Kigure, Y. & other authors ( 2006; ). Cellular polyamine catalogues of the five classes of the phylum Proteobacteria: distributions of homospermidine within the class Alphaproteobacteria, hydroxyputrescine within the class Betaproteobacteria, norspermidine within the class Gammaproteobacteria, and spermidine within the classes Deltaproteobacteria and Epsilonproteobacteria. Ann Gunma Health Sci 27, 1–16.
    [Google Scholar]
  15. Islam, M. S., Kawasaki, H., Nakagawa, Y., Hattori, T. & Seki, T. ( 2007; ). Labrys okinawensis sp. nov. and Labrys miyagiensis sp. nov., budding bacteria isolated from rhizosphere habitats in Japan, and emended descriptions of the genus Labrys and Labrys monachus. Int J Syst Evol Microbiol 57, 552–557.[CrossRef]
    [Google Scholar]
  16. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, S., Steppi, S. & other authors ( 2004; ). ARB: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef]
    [Google Scholar]
  17. Martinez-Rodriguez, A. & Mackey, B. M. ( 2005; ). Physiological changes in Campylobacter jejuni on entry into stationary phase. Int J Food Microbiol 101, 1–8.[CrossRef]
    [Google Scholar]
  18. Maturin, L. J. & Peeler, J. T. ( 2001; ). Aerobic plate count. In Bacteriological Analytical Manual, chapter 3. Edited by Robert I. Merker, George J. Jackson & Ruth Bandler. College Park, MD: US Food and Drug Administration.
  19. Miller, J. A., Kalyuzhnaya, M. G., Noyes, E., Lara, J. C., Lidstrom, M. E. & Chistoserdova, L. ( 2005; ). Labrys methylaminiphilus sp. nov., a novel facultatively methylotrophic bacterium from a freshwater lake sediment. Int J Syst Evol Microbiol 55, 1247–1253.[CrossRef]
    [Google Scholar]
  20. Mueller-Spitz, S. R., Goetz, G. W. & McLellan, S. L. ( 2009; ). Temporal and spatial variability in nearshore bacterioplankton communities of Lake Michigan. FEMS Microbiol Ecol 67, 511–522.[CrossRef]
    [Google Scholar]
  21. Murray, R. G. E., Doetsch, R. N. & Robinow, C. F. ( 1994; ). Determinative and cytological light microscopy. In Methods for General and Molecular Bacteriology, pp. 21–41. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  22. Newton, R. J., Kent, A. D., Triplett, E. W. & McMahon, K. D. ( 2006; ). Microbial community dynamics in a humic lake: differential persistence of common freshwater phylotypes. Environ Microbiol 8, 956–970.[CrossRef]
    [Google Scholar]
  23. Santo Domingo, J. W., Meckes, M. C., Simpson, J. M., Sloss, B. & Reasoner, D. J. ( 2003; ). Molecular characterization of bacteria inhabiting a water distribution system simulator. Water Sci Technol 47, 149–154.
    [Google Scholar]
  24. Schauer, M., Kamenik, C. & Hahn, M. W. ( 2005; ). Ecological differentiation within a cosmopolitan group of planktonic freshwater bacteria (SOL cluster, Saprospiraceae, Bacteroides). Appl Environ Microbiol 71, 5900–5907.[CrossRef]
    [Google Scholar]
  25. Smibert, R. M. & Krieg, R. N. ( 1994; ). Phenotypic characterization. In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  26. Stamatakis, A. ( 2006; ). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690.[CrossRef]
    [Google Scholar]
  27. Stolz, A., Busse, H.-J. & Kämpfer, P. ( 2007; ). Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 57, 572–576.[CrossRef]
    [Google Scholar]
  28. Tindall, B. J. ( 1990a; ). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13, 128–130.[CrossRef]
    [Google Scholar]
  29. Tindall, B. J. ( 1990b; ). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66, 199–202.[CrossRef]
    [Google Scholar]
  30. Van der Gucht, K., Vandekerckhove, T., Vloemans, N., Cousin, S., Muylaert, K., Sabbe, K., Gillis, M., Declerk, S., De Meester, L. & Vyverman, W. ( 2005; ). Characterization of bacterial communities in four freshwater lakes differing in nutrient load and food web structure. FEMS Microbiol Ecol 53, 205–220.[CrossRef]
    [Google Scholar]
  31. Vasil'eva, L.V. & Semenov, A.M. ( 1984; ). New budding prosthecate bacterium Labrys monahos with radial symmetry. Microbiology (English translation of Mikrobiologiia) 53, 68–75.
    [Google Scholar]
  32. Wieser, M. & Busse, H.-J. ( 2000; ). Rapid identification of Staphylococcus epidermidis. Int J Syst Evol Microbiol 50, 1087–1093.[CrossRef]
    [Google Scholar]
  33. Williams, M. M., Domingo, J. W., Meckes, M. C., Kelty, C. A. & Rochon, H. S. ( 2004; ). Phylogenetic diversity of drinking water bacteria in a distribution system simulator. J Appl Microbiol 96, 954–964.[CrossRef]
    [Google Scholar]
  34. Yarza, P., Richter, M., Peplies, J., Euzéby, J., Amann, R., Schleifer, K.-H., Ludwig, W., Glöckner, F. O. & Rosselló-Móra, R. ( 2008; ). The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31, 241–250.[CrossRef]
    [Google Scholar]
  35. Zwart, G., Crump, B. C., Kampst-van Agterveld, M., Hagen, F. & Han, S.-K. ( 2002; ). Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat Microb Ecol 28, 141–155.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.014977-0
Loading
/content/journal/ijsem/10.1099/ijs.0.014977-0
Loading

Data & Media loading...

Supplements

vol. , part 7, pp. 1570 - 1576

(a) Cells of strain W1215-PCA4 in differential interference contrast after 48 h of incubation on plate count agar, 25°C and (b) light microscopy of cells of strain W1215-PCA-4 stained with India ink after 24 h of incubation on plate count agar. [ PDF] 314 KB



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error