1887

Abstract

Two extremely halophilic archaea, strains RO2-11 and HO2-1, were isolated from two Chinese marine solar salterns, Rudong solar saltern and Haimen solar saltern, respectively. Cells of the two strains were polymorphic and Gram-stain-negative; colonies were red-pigmented. The two strains grew at NaCl concentrations of 2.6–4.3 M (optimum 3.9 M) and required at least 0.1 M Mg for growth. They were able to grow over a pH range of 6.0–8.0 and a temperature range of 20–50 °C, with optimal pH of 7.5 and optimal temperature of 37 °C. The major polar lipids of strain RO2-11 and strain HO2-1 were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester and three glycolipids, two of them chromatographically identical to S-DGD-1 and DGD-1, the third unidentified. The 16S rRNA gene sequence similarity of strain RO2-11 and strain HO2-1 was 99.3 % and highest sequence similarity with the closest relative () was 91.4 %. Based on the data obtained, the two isolates could not be classified in any recognized genus of the family . Strain RO2-11 and strain HO2-1 are thus considered to represent a novel species of a new genus within the family , for which the name gen. nov., sp. nov. is proposed. The type strain is RO2-11 (=CGMCC 1.7738 =JCM 15772).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.014928-0
2010-06-01
2021-04-11
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/6/1366.html?itemId=/content/journal/ijsem/10.1099/ijs.0.014928-0&mimeType=html&fmt=ahah

References

  1. Allen M. A., Goh F., Leuko S., Echigo A., Mizuki T., Usami R., Kamekura M., Neilan B. A., Burns B. P. 2008; Haloferax elongans sp. nov. and Haloferax mucosum sp. nov., isolated from microbial mats from Hamelin Pool, Shark Bay, Australia. Int J Syst Evol Microbiol 58:798–802 [CrossRef]
    [Google Scholar]
  2. Burns D. G., Janssen P. H., Itoh T., Kamekura M., Li Z., Jensen G., Rodriguez-Valera F., Bolhuis H., Dyall-Smith M. L. 2007; Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain. Int J Syst Evol Microbiol 57:387–392 [CrossRef]
    [Google Scholar]
  3. Bardavid R. E., Mana L., Oren A. 2007; Haloplanus natans gen. nov., sp. nov., an extremely halophilic, gas-vacuolate archaeon isolated from Dead Sea-Red Sea water mixtures in experimental outdoor ponds. Int J Syst Evol Microbiol 57:780–783 [CrossRef]
    [Google Scholar]
  4. Castillo A. M., Gutiérrez M. C., Kamekura M., Ma Y.-H., Cowan D. A., Jones B. E., Grant W. D., Ventosa A. 2006; Halovivax asiaticus gen. nov., sp. nov., a novel extremely halophilic archaeon isolated from Inner Mongolia, China. Int J Syst Evol Microbiol 56:765–770 [CrossRef]
    [Google Scholar]
  5. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y.-W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [CrossRef]
    [Google Scholar]
  6. Cui H.-L., Lin Z.-Y., Dong Y., Zhou P.-J., Liu S.-J. 2007; Halorubrum litoreum sp. nov., an extremely halophilic archaeon from a solar saltern. Int J Syst Evol Microbiol 57:2204–2206 [CrossRef]
    [Google Scholar]
  7. Cui H.-L., Zhou P.-J., Oren A., Liu S.-J. 2009; Intraspecific polymorphism of 16S rRNA genes in two halophilic archaeal genera, Haloarcula and Halomicrobium . Extremophiles 1331–37 [CrossRef]
    [Google Scholar]
  8. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  9. Dussault H. P. 1955; An improved technique for staining red halophilic bacteria. J Bacteriol 70:484–485
    [Google Scholar]
  10. Dyall-Smith M. L. 2008; The Halohandbook: Protocols for haloarchaeal genetics. http://www.haloarchaea.com/resources/halohandbook/
    [Google Scholar]
  11. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  12. Gonzalez C., Gutierrez C., Ramirez C. 1978; Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 24:710–715 [CrossRef]
    [Google Scholar]
  13. Gutíérrez C., González C. 1972; Method for simultaneous detection of proteinase and esterase activities in extremely halophilic bacteria. Appl Microbiol 24:516–517
    [Google Scholar]
  14. Gutiérrez M. C., Castillo A. M., Kamekura M., Ventosa A. 2008; Haloterrigena salina sp. nov., an extremely halophilic archaeon isolated from a salt lake. Int J Syst Evol Microbiol 58:2880–2884 [CrossRef]
    [Google Scholar]
  15. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  16. Kates M. 1986 In Techniques of Lipidology , 2nd rev. edn. pp. 106–107187–188 and 251–254 Amsterdam: Elsevier;
    [Google Scholar]
  17. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  18. Montalvo-Rodríguez R., Vreeland R. H., Oren A., Kessel M., Betancourt C., López-Garriga J. 1998; Halogeometricum borinquense gen. nov., sp. nov., a novel halophilic archaeon from Puerto Rico. Int J Syst Bacteriol 48:1305–1312 [CrossRef]
    [Google Scholar]
  19. Ng W.-L., Yang C.-F., Halladay J. T., Arora A., DasSarma S. 1995; Protocol 25. Isolation of genomic and plasmid DNAs from Halobacterium halobium . In Archaea: a Laboratory Manual: Halophiles pp 179–180 Edited by DasSarma S., Fleischmann E. M. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  20. Oren A. 2006; The order Halobacteriales . In The Prokaryotes: a Handbook on the Biology of Bacteria , 3rd edn. vol 3 pp 113–164 Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E. New York: Springer;
    [Google Scholar]
  21. Oren A., Ventosa A., Grant W. D. 1997; Proposed minimal standards for description of new taxa in the order Halobacteriales . Int J Syst Bacteriol 47:233–238 [CrossRef]
    [Google Scholar]
  22. Oren A., Arahal D. R., Ventosa A. 2009; Emended descriptions of genera of the family Halobacteriaceae . Int J Syst Evol Microbiol 59:637–642 [CrossRef]
    [Google Scholar]
  23. Pesenti P. T., Sikaroodi M., Guillevet P. M., Sanchez-Porro C., Ventosa A., Litchfield C. D. 2008; Halorubrum californiense sp. nov., an extreme archaeal halophile isolated from a crystallizer pond at a solar salt plant in California. Int J Syst Evol Microbiol 58:2710–2715 [CrossRef]
    [Google Scholar]
  24. Purdy K. J., Cresswell-Maynard T. D., Nedwell D. B., McGenity T. J., Grant W. D., Timmis K. N., Embley T. M. 2004; Isolation of haloarchaea that grow at low salinities. Environ Microbiol 6:591–595 [CrossRef]
    [Google Scholar]
  25. Reasoner D. J., Geldreich E. E. 1985; A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7
    [Google Scholar]
  26. Rodriguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A. 1979; Isolation of extreme halophiles from seawater. Appl Environ Microbiol 38:164–165
    [Google Scholar]
  27. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  28. Savage K. N., Krumholz L. R., Oren A., Elshahed M. S. 2007; Haladaptatus paucihalophilus gen. nov., sp. nov., a halophilic archaeon isolated from a low-salt, sulfide-rich spring. Int J Syst Evol Microbiol 57:19–24 [CrossRef]
    [Google Scholar]
  29. Savage K. N., Krumholz L. R., Oren A., Elshahed M. S. 2008; Halosarcina pallida gen. nov., sp. nov., a halophilic archaeon from a low-salt, sulfide-rich spring. Int J Syst Evol Microbiol 58:856–860 [CrossRef]
    [Google Scholar]
  30. Shao P., Chen Y., Zhou H., Qu L., Ma Y., Li H., Jiao N. 2004; Phylogenetic diversity of Archaea in prawn farm sediment. Mar Biol 146:133–142 [CrossRef]
    [Google Scholar]
  31. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  32. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef]
    [Google Scholar]
  33. Xin H., Itoh T., Zhou P., Suzuki K., Kamekura M., Nakase T. 2000; Natrinema versiforme sp. nov., an extremely halophilic archaeon from Aibi salt lake, Xinjiang, China. Int J Syst Evol Microbiol 50:1297–1303 [CrossRef]
    [Google Scholar]
  34. Xu Y., Zhou P., Tian X. 1999; Characterization of two novel haloalkaliphilic archaea Natronorubrum bangense gen.nov., sp. nov. and Natronorubrum tibetense gen. nov., sp. nov. Int J Syst Bacteriol 49:261–266 [CrossRef]
    [Google Scholar]
  35. Zvyagintseva I. S., Tarasov A. L. 1988; Extreme halophilic bacteria from saline soils. Microbiology (English translation of Mikrobiologiia ) 56:664–669
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.014928-0
Loading
/content/journal/ijsem/10.1099/ijs.0.014928-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error