1887

Abstract

A novel Gram-negative, rod-shaped, motile, non-spore-forming bacterial strain, CMS, isolated from soil was characterized using phenotypic and molecular taxonomic methods. 16S rRNA gene sequence analysis revealed that the organism belongs phylogenetically to the genus . , and were the most closely related species, with 16S rRNA gene sequence similarities to the respective type strains of 99.79, 99.73 and 99.59 %. Relatively low gene sequence similarities (<90 %) and DNA–DNA reassociation values (<51 %) were obtained between the strain and its phylogenetically closest neighbours. The G+C content of strain CMS was 62.7 mol%. The major cellular fatty acids were C 7, summed feature 3 (C 7 and/or iso-C 2-OH), C and C 3-OH. Based on the phenotypic and genetic evidence, the strain is suggested to represent a novel species, for which the name sp. nov. is proposed. The type strain is CMS (=BCRC 17751 =DSM 21245).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.014779-0
2010-09-01
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/9/2094.html?itemId=/content/journal/ijsem/10.1099/ijs.0.014779-0&mimeType=html&fmt=ahah

References

  1. Anzai, Y., Kim, H., Park, J.-Y., Wakabayashi, H. & Oyaizu, H. ( 2000; ). Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50, 1563–1589.[CrossRef]
    [Google Scholar]
  2. Cámara, B., Strömpl, C., Verbarg, S., Spröer, C., Pieper, D. H. & Tindall, B. J. ( 2007; ). Pseudomonas reinekei sp. nov., Pseudomonas moorei sp. nov. and Pseudomonas mohnii sp. nov., novel species capable of degrading chlorosalicylates or isopimaric acid. Int J Syst Evol Microbiol 57, 923–931.[CrossRef]
    [Google Scholar]
  3. Collins, M. D. ( 1985; ). Isoprenoid quinone analysis in classification and identification. In Chemical Methods in Bacterial Systematics, pp. 267–287. Edited by Goodfellow, M. & Minnikin, D. E.. London. : Academic Press.
    [Google Scholar]
  4. Collins, M. D. & Jones, D. ( 1981; ). A note on the separation of natural mixtures of bacterial ubiquinones using reverse-phase partition thin-layer chromatography and high performance liquid chromatography. J Appl Bacteriol 51, 129–134.[CrossRef]
    [Google Scholar]
  5. Dabboussi, F., Hamze, M., Singer, E., Geoffroy, V., Meyer, J. M. & Izard, D. ( 2002; ). Pseudomonas mosselii sp. nov., a novel species isolated from clinical specimens. Int J Syst Evol Microbiol 52, 363–376.
    [Google Scholar]
  6. Elomari, M., Coroler, L., Verhille, S., Izard, D. & Leclerc, H. ( 1997; ). Pseudomonas monteilii sp. nov., isolated from clinical specimens. Int J Syst Bacteriol 47, 846–852.[CrossRef]
    [Google Scholar]
  7. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  8. Felsenstein, J. ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef]
    [Google Scholar]
  9. Felsenstein, J. ( 1984; ). Distance methods for inferring phylogenies: a justification. Evolution 38, 16–24.[CrossRef]
    [Google Scholar]
  10. Felsenstein, J. ( 2005; ). phylip (phylogeny inference package), version 3.65. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  11. Fitch, W. M. ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20, 406–416.[CrossRef]
    [Google Scholar]
  12. Goris, J., Suzuki, K., De Vos, P., Nakase, T. & Kersters, K. ( 1998; ). Evaluation of a microplate DNA-DNA hybridization method compared with the initial renaturation method. Can J Microbiol 44, 1148–1153.[CrossRef]
    [Google Scholar]
  13. Hu, H. Y., Lim, B. R., Goto, N. & Fujie, K. ( 2001; ). Analytical precision and repeatability of respiratory quinones for quantitative study of microbial community structure in environmental samples. J Microbiol Methods 47, 17–24.[CrossRef]
    [Google Scholar]
  14. Kersters, K., Ludwig, W., Vancanneyt, M., De Vos, P., Gillis, M. & Schleifer, K. H. ( 1996; ). Recent changes in the classification of the pseudomonads: an overview. Syst Appl Microbiol 19, 465–477.[CrossRef]
    [Google Scholar]
  15. Komagata, K. & Suzuki, K. ( 1987; ). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19, 161–208.
    [Google Scholar]
  16. Mulet, M., Gomila, M., Gruffaz, C., Meyer, J. M., Palleroni, N. J., Lalucat, J. & García-Valdés, E. ( 2008; ). Phylogenetic analysis and siderotyping as useful tools in the taxonomy of Pseudomonas stutzeri: description of a novel genomovar. Int J Syst Evol Microbiol 58, 2309–2315.[CrossRef]
    [Google Scholar]
  17. Nishimori, E., Kita-Tsukamoto, K. & Wakabayashi, H. ( 2000; ). Pseudomonas plecoglossicida sp. nov., the causative agent of bacterial haemorrhagic ascites of ayu, Plecoglossus altivelis. Int J Syst Evol Microbiol 50, 83–89.[CrossRef]
    [Google Scholar]
  18. Oyaizu, H. & Komagata, K. ( 1983; ). Grouping of Pseudomonas species on the basis of cellular fatty acid composition and the quinone system with special reference to the existence of 3-hydroxy fatty acids. J Gen Appl Microbiol 29, 17–40.[CrossRef]
    [Google Scholar]
  19. Palleroni, N. J. ( 1984; ). Genus I. Pseudomonas Migula 1894. In Bergey's Manual of Systematic Bacteriology, vol. 1, pp. 141–199. Edited by Krieg, N. R. & Holt, J. G.. Baltimore. : Williams & Wilkins.
    [Google Scholar]
  20. Pungrasmi, W., Lee, H. S., Yokota, A. & Ohta, A. ( 2008; ). Pseudomonas japonica sp. nov., a novel species that assimilates straight chain alkylphenols. J Gen Appl Microbiol 54, 61–69.[CrossRef]
    [Google Scholar]
  21. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  22. Sasser, M. ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20, 16.
    [Google Scholar]
  23. Sneath, P. H. A., Stevens, M. & Sackin, M. J. ( 1981; ). Numerical taxonomy of Pseudomonas based on published record of substrate utilization. Antonie van Leeuwenhoek 47, 423–448.[CrossRef]
    [Google Scholar]
  24. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  25. Tai, C. J., Kuo, H. P., Lee, F. L., Chen, H. K., Yokota, A. & Lo, C. C. ( 2006; ). Chryseobacterium taiwanense sp. nov., isolated from soil in Taiwan. Int J Syst Evol Microbiol 56, 1771–1776.[CrossRef]
    [Google Scholar]
  26. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  27. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  28. Uchino, M., Shida, O., Uchimura, T. & Komagata, K. ( 2001; ). Recharacterization of Pseudomonas fulva Iizuka and Komagata 1963, and proposals of Pseudomonas parafulva sp. nov. and Pseudomonas cremoricolorata sp. nov. J Gen Appl Microbiol 47, 247–261.[CrossRef]
    [Google Scholar]
  29. Vancanneyt, M., Witt, S., Abraham, W.-R., Kersters, K. & Fredrickson, H. L. ( 1996; ). Fatty acid content in whole-cell hydrolysates and phospholipid fractions of pseudomonads: a taxonomic evaluation. Syst Appl Microbiol 19, 528–540.[CrossRef]
    [Google Scholar]
  30. Wang, L. T., Lee, F. L., Tai, C. J. & Kasai, H. ( 2007; ). Comparison of gyrB gene sequences, 16S rRNA gene sequences and DNA–DNA hybridization in the Bacillus subtilis group. Int J Syst Evol Microbiol 57, 1846–1850.[CrossRef]
    [Google Scholar]
  31. West, M., Burdash, N. M. & Freimuth, F. ( 1977; ). Simplified silver-plating stain for flagella. J Clin Microbiol 6, 414–419.
    [Google Scholar]
  32. Yamamoto, S. & Harayama, S. ( 1995; ). PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 61, 1104–1109.
    [Google Scholar]
  33. Yamamoto, S. & Harayama, S. ( 1998; ). Phylogenetic relationships of Pseudomonas putida strains deduced from the nucleotide sequences of gyrB, rpoD and 16S rRNA genes. Int J Syst Bacteriol 48, 813–819.[CrossRef]
    [Google Scholar]
  34. Yamamoto, S., Bouvet, P. J. M. & Harayama, S. ( 1999; ). Phylogenetic structures of the genus Acinetobacter based on gyrB sequences: comparison with the grouping by DNA–DNA hybridization. Int J Syst Bacteriol 49, 87–95.[CrossRef]
    [Google Scholar]
  35. Yamamoto, S., Kasai, H., Arnold, D. L., Jackson, R. W., Vivian, A. & Harayama, S. ( 2000; ). Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology 146, 2385–2394.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.014779-0
Loading
/content/journal/ijsem/10.1099/ijs.0.014779-0
Loading

Data & Media loading...

Supplements

vol. , part 9, pp. 2094 - 2098

Maximum-likelihood (Fig. S1) and maximum-parsimony (Fig. S2) trees based on 16S rRNA gene sequences of strains showing the position of strain CMS ( sp. nov.).

Neighbour-joining (Fig. S3), maximum-likelihood (Fig. S4) and maximum-parsimony (Fig. S5) trees based on gene sequences of strains showing the position of strain CMS .

Differential phenotypic characteristics of strain CMS and its phylogenetically closest relatives.

Cellular fatty acid composition of strain CMS .

Cellular fatty acid compositions of strain CMS and the type strains of closely related species.

[PDF file of Supplementary Figure and Tables](190 KB)



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error