1887

Abstract

A novel Gram-negative, rod-shaped, motile, non-spore-forming bacterial strain, CMS, isolated from soil was characterized using phenotypic and molecular taxonomic methods. 16S rRNA gene sequence analysis revealed that the organism belongs phylogenetically to the genus . , and were the most closely related species, with 16S rRNA gene sequence similarities to the respective type strains of 99.79, 99.73 and 99.59 %. Relatively low gene sequence similarities (<90 %) and DNA–DNA reassociation values (<51 %) were obtained between the strain and its phylogenetically closest neighbours. The G+C content of strain CMS was 62.7 mol%. The major cellular fatty acids were C 7, summed feature 3 (C 7 and/or iso-C 2-OH), C and C 3-OH. Based on the phenotypic and genetic evidence, the strain is suggested to represent a novel species, for which the name sp. nov. is proposed. The type strain is CMS (=BCRC 17751 =DSM 21245).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.014779-0
2010-09-01
2021-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/9/2094.html?itemId=/content/journal/ijsem/10.1099/ijs.0.014779-0&mimeType=html&fmt=ahah

References

  1. Anzai Y., Kim H., Park J.-Y., Wakabayashi H., Oyaizu H. 2000; Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50:1563–1589 [CrossRef]
    [Google Scholar]
  2. Cámara B., Strömpl C., Verbarg S., Spröer C., Pieper D. H., Tindall B. J. 2007; Pseudomonas reinekei sp. nov., Pseudomonas moorei sp. nov. and Pseudomonas mohnii sp. nov., novel species capable of degrading chlorosalicylates or isopimaric acid. Int J Syst Evol Microbiol 57:923–931 [CrossRef]
    [Google Scholar]
  3. Collins M. D. 1985; Isoprenoid quinone analysis in classification and identification. In Chemical Methods in Bacterial Systematics pp 267–287 Edited by Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  4. Collins M. D., Jones D. 1981; A note on the separation of natural mixtures of bacterial ubiquinones using reverse-phase partition thin-layer chromatography and high performance liquid chromatography. J Appl Bacteriol 51:129–134 [CrossRef]
    [Google Scholar]
  5. Dabboussi F., Hamze M., Singer E., Geoffroy V., Meyer J. M., Izard D. 2002; Pseudomonas mosselii sp. nov., a novel species isolated from clinical specimens. Int J Syst Evol Microbiol 52:363–376
    [Google Scholar]
  6. Elomari M., Coroler L., Verhille S., Izard D., Leclerc H. 1997; Pseudomonas monteilii sp. nov., isolated from clinical specimens. Int J Syst Bacteriol 47:846–852 [CrossRef]
    [Google Scholar]
  7. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  8. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  9. Felsenstein J. 1984; Distance methods for inferring phylogenies: a justification. Evolution 38:16–24 [CrossRef]
    [Google Scholar]
  10. Felsenstein J. 2005 phylip (phylogeny inference package), version 3.65. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  11. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  12. Goris J., Suzuki K., De Vos P., Nakase T., Kersters K. 1998; Evaluation of a microplate DNA-DNA hybridization method compared with the initial renaturation method. Can J Microbiol 44:1148–1153 [CrossRef]
    [Google Scholar]
  13. Hu H. Y., Lim B. R., Goto N., Fujie K. 2001; Analytical precision and repeatability of respiratory quinones for quantitative study of microbial community structure in environmental samples. J Microbiol Methods 47:17–24 [CrossRef]
    [Google Scholar]
  14. Kersters K., Ludwig W., Vancanneyt M., De Vos P., Gillis M., Schleifer K. H. 1996; Recent changes in the classification of the pseudomonads: an overview. Syst Appl Microbiol 19:465–477 [CrossRef]
    [Google Scholar]
  15. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–208
    [Google Scholar]
  16. Mulet M., Gomila M., Gruffaz C., Meyer J. M., Palleroni N. J., Lalucat J., García-Valdés E. 2008; Phylogenetic analysis and siderotyping as useful tools in the taxonomy of Pseudomonas stutzeri : description of a novel genomovar. Int J Syst Evol Microbiol 58:2309–2315 [CrossRef]
    [Google Scholar]
  17. Nishimori E., Kita-Tsukamoto K., Wakabayashi H. 2000; Pseudomonas plecoglossicida sp. nov., the causative agent of bacterial haemorrhagic ascites of ayu, Plecoglossus altivelis . Int J Syst Evol Microbiol 50:83–89 [CrossRef]
    [Google Scholar]
  18. Oyaizu H., Komagata K. 1983; Grouping of Pseudomonas species on the basis of cellular fatty acid composition and the quinone system with special reference to the existence of 3-hydroxy fatty acids. J Gen Appl Microbiol 29:17–40 [CrossRef]
    [Google Scholar]
  19. Palleroni N. J. 1984; Genus I. Pseudomonas Migula 1894. In Bergey's Manual of Systematic Bacteriology vol 1 pp 141–199 Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  20. Pungrasmi W., Lee H. S., Yokota A., Ohta A. 2008; Pseudomonas japonica sp. nov., a novel species that assimilates straight chain alkylphenols. J Gen Appl Microbiol 54:61–69 [CrossRef]
    [Google Scholar]
  21. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  22. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20: 16
    [Google Scholar]
  23. Sneath P. H. A., Stevens M., Sackin M. J. 1981; Numerical taxonomy of Pseudomonas based on published record of substrate utilization. Antonie van Leeuwenhoek 47:423–448 [CrossRef]
    [Google Scholar]
  24. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  25. Tai C. J., Kuo H. P., Lee F. L., Chen H. K., Yokota A., Lo C. C. 2006; Chryseobacterium taiwanense sp. nov., isolated from soil in Taiwan. Int J Syst Evol Microbiol 56:1771–1776 [CrossRef]
    [Google Scholar]
  26. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  27. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  28. Uchino M., Shida O., Uchimura T., Komagata K. 2001; Recharacterization of Pseudomonas fulva Iizuka and Komagata 1963, and proposals of Pseudomonas parafulva sp.nov. and Pseudomonas cremoricolorata sp. nov. J Gen Appl Microbiol 47:247–261 [CrossRef]
    [Google Scholar]
  29. Vancanneyt M., Witt S., Abraham W.-R., Kersters K., Fredrickson H. L. 1996; Fatty acid content in whole-cell hydrolysates and phospholipid fractions of pseudomonads: a taxonomic evaluation. Syst Appl Microbiol 19:528–540 [CrossRef]
    [Google Scholar]
  30. Wang L. T., Lee F. L., Tai C. J., Kasai H. 2007; Comparison of gyrB gene sequences, 16S rRNA gene sequences and DNA–DNA hybridization in the Bacillus subtilis group. Int J Syst Evol Microbiol 57:1846–1850 [CrossRef]
    [Google Scholar]
  31. West M., Burdash N. M., Freimuth F. 1977; Simplified silver-plating stain for flagella. J Clin Microbiol 6:414–419
    [Google Scholar]
  32. Yamamoto S., Harayama S. 1995; PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 61:1104–1109
    [Google Scholar]
  33. Yamamoto S., Harayama S. 1998; Phylogenetic relationships of Pseudomonas putida strains deduced from the nucleotide sequences of gyrB , rpoD and 16S rRNA genes. Int J Syst Bacteriol 48:813–819 [CrossRef]
    [Google Scholar]
  34. Yamamoto S., Bouvet P. J. M., Harayama S. 1999; Phylogenetic structures of the genus Acinetobacter based on gyrB sequences: comparison with the grouping by DNA–DNA hybridization. Int J Syst Bacteriol 49:87–95 [CrossRef]
    [Google Scholar]
  35. Yamamoto S., Kasai H., Arnold D. L., Jackson R. W., Vivian A., Harayama S. 2000; Phylogeny of the genus Pseudomonas : intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology 146:2385–2394
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.014779-0
Loading
/content/journal/ijsem/10.1099/ijs.0.014779-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error