1887

Abstract

A strictly anaerobic, thermophilic bacterium, designated strain AeB, was isolated from microbial mats colonizing a run-off channel formed by free-flowing thermal water from a bore well (registered number 17263) of the Great Artesian Basin, Australia. Cells of strain AeB were slightly curved rods (2.5–6.0×1.0 μm) that stained Gram-negative and formed spherical terminal to subterminal spores. The strain grew optimally in tryptone–yeast extract–Casamino acids medium at 50 °C (range 37–55 °C) and pH 7 (range pH 5–9). Strain AeB grew poorly on yeast extract (0.2 %) and tryptone (0.2 %) as sole carbon sources, which were obligately required for growth on other energy sources. Growth of strain AeB increased in the presence of various carbohydrates and amino acids, but not organic acids. End products detected from glucose fermentation were ethanol, acetate, CO and H. In the presence of 0.2 % yeast extract, iron(III), manganese(IV), vanadium(V) and cobalt(III) were reduced, but not sulfate, thiosulfate, sulfite, elemental sulfur, nitrate or nitrite. Iron(III) was also reduced in the presence of tryptone, peptone, Casamino acids and amyl media (Research Achievement), but not starch, xylan, chitin, glycerol, ethanol, pyruvate, benzoate, lactate, acetate, propionate, succinate, glycine, serine, lysine, threonine, arginine, glutamate, valine, leucine, histidine, alanine, aspartate, isoleucine or methionine. Growth was inhibited by chloramphenicol, streptomycin, tetracycline, penicillin, ampicillin and NaCl concentrations >2 %. The DNA G+C content was 35.4±1 mol%, as determined by the thermal denaturation method. 16S rRNA gene sequence analysis indicated that strain AeB is a member of the family , class phylum ‘’, and is positioned approximately equidistantly between the genera , , and (16S rRNA gene similarity values of 87.8–90.9 %). On the basis of 16S rRNA gene sequence comparisons and physiological characteristics, strain AeB is considered to represent a novel species in a new genus, for which the name gen. nov., sp. nov. is proposed; the type strain is AeB (=JCM 15555=KCTC 5667).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.014670-0
2010-06-01
2019-12-12
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/6/1394.html?itemId=/content/journal/ijsem/10.1099/ijs.0.014670-0&mimeType=html&fmt=ahah

References

  1. Andreesen, J. R., Zindel, U. & Dürre, P. ( 1985; ). Clostridium cylindrosporum (ex Barker and Beck 1942) nom. rev. Int J Syst Bacteriol 35, 206–208.[CrossRef]
    [Google Scholar]
  2. Brock, T. D. & Freeze, H. ( 1969; ). Thermus aquaticus gen. nov., a nonsporulating extreme thermophile. J Bacteriol 98, 289–297.
    [Google Scholar]
  3. Brown, D. P., Genova-Raeva, L., Green, B. D., Wilkinson, S. R., Young, M. & Youngman, P. ( 1994; ). Characterization of spo0A homologues in diverse Bacillus and Clostridium species identifies a probable DNA-binding domain. Mol Microbiol 14, 411–426.[CrossRef]
    [Google Scholar]
  4. Carpentier, W., Sandra, K., De Smet, I., Brigé, A., De Smet, L. & Van Beeumen, J. ( 2003; ). Microbial reduction and precipitation of vanadium by Shewanella oneidensis. Appl Environ Microbiol 69, 3636–3639.[CrossRef]
    [Google Scholar]
  5. Chrisostomos, S., Patel, B. K. C., Dwivedi, P. P. & Denman, S. E. ( 1996; ). Caloramator indicus sp. nov., a new thermophilic anaerobic bacterium isolated from the deep-seated nonvolcanically heated waters of an Indian artesian aquifer. Int J Syst Bacteriol 46, 497–501.[CrossRef]
    [Google Scholar]
  6. Dürre, P., Andersch, W. & Andreesen, J. R. ( 1981; ). Isolation and characterisation of an adenine-utilizing anaerobic sporeformer, Clostridium purinolyticum sp. nov. Int J Syst Bacteriol 31, 184–194.[CrossRef]
    [Google Scholar]
  7. Habermehl, M. A. ( 1980; ). The Great Artesian Basin, Australia. BMR J Aust Geol Geophys 5, 9–38.
    [Google Scholar]
  8. Kanso, S. & Patel, B. K. C. ( 2003; ). Microvirga subterranea gen. nov., sp. nov., a moderate thermophile from a deep subsurface Australian thermal aquifer. Int J Syst Evol Microbiol 53, 401–406.[CrossRef]
    [Google Scholar]
  9. Lovley, D. R. ( 1997; ). Microbial Fe(III) reduction in subsurface environments. FEMS Microbiol Rev 20, 305–313.[CrossRef]
    [Google Scholar]
  10. Lovley, D. R. & Phillips, E. J. P. ( 1986; ). Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol 51, 683–689.
    [Google Scholar]
  11. Lovley, D. R. & Phillips, E. J. P. ( 1988; ). Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54, 1472–1480.
    [Google Scholar]
  12. Marmur, J. & Doty, P. ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef]
    [Google Scholar]
  13. Ogg, C. D. & Patel, B. K. C. ( 2009a; ). Caloramator australicus sp. nov., a thermophilic anaerobic bacterium from the Great Artesian Basin of Australia. Int J Syst Evol Microbiol 59, 95–101.[CrossRef]
    [Google Scholar]
  14. Ogg, C. D. & Patel, B. K. C. ( 2009b; ). Thermotalea metallivorans gen. nov., sp. nov., a thermophilic, anaerobic bacterium from the Great Artesian Basin of Australia aquifer. Int J Syst Evol Microbiol 59, 964–971.[CrossRef]
    [Google Scholar]
  15. Ogg, C. D. & Patel, B. K. C. ( 2009c; ). Fervidicola ferrireducens gen. nov., sp. nov., a thermophilic anaerobic bacterium from geothermal waters of the Great Artesian Basin, Australia. Int J Syst Evol Microbiol 59, 1100–1107.[CrossRef]
    [Google Scholar]
  16. Ogg, C. D. & Patel, B. K. C. ( 2009d; ). Sporolituus thermophilus gen. nov., sp. nov., a citrate-fermenting thermophilic anaerobic bacterium from geothermal waters of the Great Artesian Basin of Australia. Int J Syst Evol Microbiol 59, 2848–2853.[CrossRef]
    [Google Scholar]
  17. Ogg, C. D., Greene, A. C. & Patel, B. K. C. ( 2010; ). Thermovenabulum gondwanense sp. nov., a thermophilic anaerobic Fe(III)-reducing bacterium isolated from microbial mats thriving in a Great Artesian Basin bore runoff channel. Int J Syst Evol Microbiol 60, 1079–1084.[CrossRef]
    [Google Scholar]
  18. Patel, B. K. C., Morgan, H. W. & Daniel, R. M. ( 1985a; ). A simple and efficient method for preparing and dispensing anaerobic media. Biotechnol Lett 7, 277–278.[CrossRef]
    [Google Scholar]
  19. Patel, B. K. C., Morgan, H. W. & Daniel, R. M. ( 1985b; ). Fervidobacterium nodosum gen. nov. and spec. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch Microbiol 141, 63–69.[CrossRef]
    [Google Scholar]
  20. Ramamoorthy, S., Sass, H., Langner, H., Schumann, P., Kroppenstedt, R. M., Spring, S., Overmann, J. & Rosenzweig, R. F. ( 2006; ). Desulfosporosinus lacus sp. nov., a sulfate-reducing bacterium isolated from pristine freshwater lake sediments. Int J Syst Evol Microbiol 56, 2729–2736.[CrossRef]
    [Google Scholar]
  21. Seyfried, M., Lyon, D., Rainey, F. A. & Wiegel, J. ( 2002; ). Calormator viterbiensis sp. nov., a novel thermophilic, glycerol-fermenting bacterium isolated from a hot spring in Italy. Int J Syst Evol Microbiol 52, 1177–1184.[CrossRef]
    [Google Scholar]
  22. Sørensen, J. ( 1982; ). Reduction of ferric iron in anaerobic, marine sediment and interaction with reduction of nitrate and sulfate. Appl Environ Microbiol 43, 319–324.
    [Google Scholar]
  23. Spanevello, M. D. ( 2001; ). The phylogeny of prokaryotes associated with Australia’s Great Artesian Basin. PhD thesis, School of Biomolecular and Physical Science, Griffith University, Brisbane, Australia.
  24. Spanevello, M. D., Yamamoto, H. & Patel, B. K. C. ( 2002; ). Thermaerobacter subterraneus sp. nov., a novel aerobic bacterium from the Great Artesian Basin of Australia, and emendation of the genus Thermaerobacter. Int J Syst Evol Microbiol 52, 795–800.[CrossRef]
    [Google Scholar]
  25. Spratt, H. G., Jr, Siekmann, E. C. & Hodson, R. E. ( 1994; ). Microbial manganese oxidation in saltmarsh surface sediments using a leuco crystal violet manganese oxide detection technique. Estuar Coast Shelf Sci 38, 91–112.[CrossRef]
    [Google Scholar]
  26. Wolin, E. A., Wolin, M. J. & Wolfe, R. S. ( 1963; ). Formation of methane by bacterial extracts. J Biol Chem 238, 2882–2886.
    [Google Scholar]
  27. Zavarzina, D. G., Tourova, T. P., Kuznetsov, B. B., Bonch-Osomolovskaya, E. A. & Slobodkin, A. I. ( 2002; ). Thermovenabulum ferriorganovorum gen. nov., sp. nov., a novel thermophilic, anaerobic, endospore-forming bacterium. Int J Syst Evol Microbiol 52, 1737–1743.[CrossRef]
    [Google Scholar]
  28. Zeikus, J. G., Hegge, P. W. & Anderson, M. A. ( 1979; ). Thermoanaerobium brockii gen. nov. and sp. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch Microbiol 122, 41–48.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.014670-0
Loading
/content/journal/ijsem/10.1099/ijs.0.014670-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error