1887

Abstract

Two anaerobic, non-spore-forming, non-motile, Gram-negative-staining bacteria, strains YIT 12060 and YIT 12061, were isolated from human faeces. Cells of strain YIT 12060 were coccoid to rod-shaped with round ends, positive for catalase, negative for indole and oxidase production, produced succinic and acetic acids as end products of glucose metabolism in peptone/yeast extract/glucose medium and had a DNA G+C content of 55.2 mol%. The main respiratory quinones were MK-10 (40 %) and MK-11 (57 %). Fatty acid analysis demonstrated the presence of a high concentration of iso-C (56 %). Following 16S rRNA gene sequence analysis, this strain was found to be most closely related to species of the genus , with 90.9–92.6 % gene sequence similarities to type strains of this species. Phylogenetic analysis and biochemical data supported the affiliation of strain YIT 12060 to the genus of the family ‘’. Strain YIT 12060 therefore represents a novel species of the genus for which the name sp. nov. is proposed; the type strain is YIT 12060 (=DSM 22520=JCM 16068). Cells of the other isolate, strain YIT 12061, were pleomorphic rods that were asaccharolytic, catalase- and oxidase-negative, positive for gelatin hydrolysis and indole production, produced small amounts of succinic, acetic and iso-valeric acids as end products of metabolism in peptone/yeast extract medium and had a DNA G+C content of approximately 42.4 mol%. On the basis of 16S rRNA gene sequence similarity values, this strain was shown to belong to the family ‘’ and related to the type strains of (89.6 %) and (86.2 %); similarity values with strains of recognized species within the family ‘e’ were less than 84 %. Biochemical data supported the affiliation of strain YIT 12061 to the genus . Strain YIT 12061 therefore represents a novel species for which the name sp. nov. is proposed; the type strain is YIT 12061 (=DSM 22474=JCM 16069).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.014571-0
2010-06-01
2020-11-30
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/6/1296.html?itemId=/content/journal/ijsem/10.1099/ijs.0.014571-0&mimeType=html&fmt=ahah

References

  1. Chonan O., Matsumoto K., Watanuki M. 1995; Effect of galactooligosaccharides on calcium absorption and preventing bone loss in ovariectomized rats. Biosci Biotechnol Biochem 59:236–239 [CrossRef]
    [Google Scholar]
  2. Eckburg P. B., Bik E. M., Bernstein C. N., Purdom E., Dethlefsen L., Sargent M., Gill S. R., Nelson K. E., Relman D. A. 2005; Diversity of the human intestinal microbial flora. Science 308:1635–1638 [CrossRef]
    [Google Scholar]
  3. Ezaki T., Saidi S. M., Liu S. L., Hashimoto Y., Yamamoto H., Yabuuchi E. 1990; Rapid procedure to determine the DNA base composition from small amounts of gram-positive bacteria. FEMS Microbiol Lett 67:127–130 [CrossRef]
    [Google Scholar]
  4. Felsenstein J. 1993 phylip (phylogeny inference package), version 3.5c Distributed by the author Department of Genome Sciences, University of Washington; Seattle, USA:
    [Google Scholar]
  5. Hardham J. M., King K. W., Dreier K., Wong J., Strietzel C., Eversole R. R., Sfintescu C., Evans R. T. 2008; Transfer of Bacteroides splanchnicus to Odoribacter gen. nov. as Odoribacter splanchnicus comb. nov., and description of Odoribacter denticanis sp. nov., isolated from the crevicular spaces of canine periodontitis patients. Int J Syst Evol Microbiol 58:103–109 [CrossRef]
    [Google Scholar]
  6. Holdeman L. V., Cato E. P., Moore W. E. C. 1977 Anaerobe Laboratory Manual , 4th edn. Blacksburg, VA: Virginia Polytechnic Institute and State University;
    [Google Scholar]
  7. Holdeman L. V., Kelley R. W., Moore W. E. C. 1984; Genus I. Bacteroides Castellani and Chalmers 1919, 959AL . In Bergey's Manual of Systematic Bacteriology pp 604–631 Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  8. Katsuta A., Adachi K., Matsuda S., Shizuri Y., Kasai K. 2005; Ferrimonas marina sp. nov. Int J Syst Evol Microbiol 55:1851–1855 [CrossRef]
    [Google Scholar]
  9. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207
    [Google Scholar]
  10. Kuykendall L. D., Roy M. A., O'Neill J. J., Devine T. E. 1988; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 38:358–361 [CrossRef]
    [Google Scholar]
  11. Ley R. E., Turnbaugh P. J., Klein S., Gordon J. I. 2006; Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023 [CrossRef]
    [Google Scholar]
  12. Li M., Wang B., Zhang M., Rantalainen M., Wang S., Zhou H., Zhang Y., Shen J., Pang X. other authors 2008; Symbiotic gut microbes modulate human metabolic phenotypes. Proc Natl Acad Sci U S A 105:2117–2122 [CrossRef]
    [Google Scholar]
  13. Mai V., Greenwald B., Morris J. G. Jr, Raufman J. P., Stine O. C. 2006; Effect of bowel preparation and colonoscopy on post-procedure intestinal microbiota composition. Gut 55:1822–1823 [CrossRef]
    [Google Scholar]
  14. Miller L. T. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586
    [Google Scholar]
  15. Morotomi M., Nagai F., Sakon H., Tanaka R. 2008; Dialister succinatiphilus sp. nov. and Barnesiella intestinihominis sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 58:2716–2720 [CrossRef]
    [Google Scholar]
  16. Morotomi M., Nagai F., Sakon H., Tanaka R. 2009; Paraprevotella clara gen. nov., sp. nov., and Paraprevotella xylaniphila sp. nov., members of the family ‘ Prevotellaceae ’ isolated from human faeces. Int J Syst Evol Microbiol 59:1895–1900 [CrossRef]
    [Google Scholar]
  17. Nagai F., Morotomi M., Sakon H., Tanaka R. 2009; Parasutterella excrementihominis gen. nov., sp. nov., a member of the family Alcaligenaceae isolated from human faeces. Int J Syst Evol Microbiol 59:1793–1797 [CrossRef]
    [Google Scholar]
  18. Page R. D. M. 1996; TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358
    [Google Scholar]
  19. Pearson W. R., Lipman D. J. 1985; Rapid and sensitive protein similarity searches. Science 227:1435–1441 [CrossRef]
    [Google Scholar]
  20. Rajilić-Stojanović M., Smidt H., de Vos W. M. 2007; Diversity of the human gastrointestinal tract microbiota revisited. Environ Microbiol 9:2125–2136 [CrossRef]
    [Google Scholar]
  21. Rautio M., Eerola E., Väisänen-Tunkelrott M.-L., Molitoris D., Lawson P., Collins M. D., Jousimies-Somer H. 2003; Reclassification of Bacteroides putredinis (Weinberg et al . 1937) in a new genus Alistipes gen.nov., as Alistipes putredinis comb. nov., and description of Alistipes finegoldii sp. nov., from human sources. Syst Appl Microbiol 26:182–188 [CrossRef]
    [Google Scholar]
  22. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  23. Sakon H., Nagai F., Morotomi M., Tanaka R. 2008; Sutterella parvirubra sp. nov. and Megamonas funiformis sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 58:970–975 [CrossRef]
    [Google Scholar]
  24. Song Y., Könönen E., Rautio M., Liu C., Bryk A., Eerola E., Finegold S. M. 2006; Alistipes onderdonkii sp. nov. and Alistipes shahii sp. nov., of human origin. Int J Syst Evol Microbiol 56:1985–1990 [CrossRef]
    [Google Scholar]
  25. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef]
    [Google Scholar]
  26. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  27. Weinberg M., Nativelle R., Prévot A. R. 1937 Les Microbes Anaérobies Paris: Masson et Cie;
    [Google Scholar]
  28. Werner H., Reichertz C. 1971; Butyric acid producing bacteroides cultures. Zentralbl Bakteriol Orig A 217:206–216
    [Google Scholar]
  29. Werner H., Rintelen G., Kunstek-Santos H. 1975; A new butyric acid-producing Bacteroides species: B. splanchnicus n. sp. Zentralbl Bakteriol Orig A 231:133–144
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.014571-0
Loading
/content/journal/ijsem/10.1099/ijs.0.014571-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error