1887

Abstract

A Gram-stain-negative, rod-shaped, oxidase-positive, non-spore-forming bacterium (Sa15) was isolated from the air in a duck barn. On the basis of 16S rRNA gene sequence similarity studies, the organism was grouped into the class gammaproteobacteria in the neighbourhood of the genus . The quinone system consisted exclusively of ubiquinone Q-8. The polar lipid profile was mainly composed of the major lipids diphosphatidylglycerol, phosphatidylmonomethylethanolamine and phosphatidylcholine, and moderate amounts of phosphatidylglycerol and an unidentified lipid. This profile was substantially different from that of LMG 19981 examined concurrently. The polyamine pattern showed the predominant amine spermidine. Major fatty acids (iso-C, iso-C 9 and iso-C) were in agreement with its phylogenetic affiliation in the vicinity of ; however, differences in the polar lipid and fatty acid patterns and the polyamine profiles could be observed as well. On the basis of DNA–DNA pairing results, chemotaxonomic data and physiological and biochemical data, the strain can be clearly differentiated from . It is evident that this organism represents a novel genus, for which the name gen. nov., sp. nov. is proposed, with the type strain Sa15 (=DSM 21944 =CCM 7599).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.014548-0
2010-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/6/1427.html?itemId=/content/journal/ijsem/10.1099/ijs.0.014548-0&mimeType=html&fmt=ahah

References

  1. Altenburger P., Kämpfer P., Makristathis A., Lubitz W., Busse H.-J. 1996; Classification of bacteria isolated from a medieval wall painting. J Biotechnol 47:39–52 [CrossRef]
    [Google Scholar]
  2. Auling G., Busse H.-J., Pilz F., Webb L., Kneifel H., Claus D. 1991; Rapid differentiation, by polyamine analysis, of Xanthomonas strains from phytopathogenic pseudomonads and other members of the class Proteobacteria interacting with plants. Int J Syst Bacteriol 41:223–228 [CrossRef]
    [Google Scholar]
  3. Busse H.-J., Auling G. 1988; Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . Syst Appl Microbiol 11:1–8 [CrossRef]
    [Google Scholar]
  4. Busse H.-J., Kämpfer P., Moore E. R. B., Nuutinen J., Tsitko I. V., Denner E. B. M., Vauterin L., Valens M., Rosselló-Mora R., Salkinoja-Salonen M. S. 2002; Thermomonas haemolytica gen. nov., sp. nov., a gammaproteobacterium from kaolin slurry. Int J Syst Evol Microbiol 52:473–483
    [Google Scholar]
  5. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  6. Finkmann W., Altendorf K., Stackebrandt E., Lipski A. 2000; Characterization of N2O-producing Xanthomonas -like isolates from biofilters as Stenotrophomonas nitritireducens sp.nov., Luteimonas mephitis gen. nov., sp. nov. and Pseudoxanthomonas broegbernensis gen. nov., sp. nov. Int J Syst Evol Microbiol 50:273–282 [CrossRef]
    [Google Scholar]
  7. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. (editors) 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  8. Hamana K., Matsuzaki S. 1993; Polyamine distribution patterns serve as a phenotypic marker in the chemotaxonomy of the Proteobacteria . Can J Microbiol 39:304–310 [CrossRef]
    [Google Scholar]
  9. Hamana K., Sato W., Gouma K., Yu J., Ino Y., Umemura Y., Mochizuki C., Takatsuka K., Kigure Y. other authors 2007; Cellular polyamine catalogues of the five classes of the phylum Proteobacteria : distributions of homospermidine within the class Alphaproteobacteria , hydroxyputrescine within the class Betaproteobacteria , norspermidine within the class Gammaproteobacteria , and spermidine within the classes Deltaproteobacteria and Epsilonproteobacteria . Ann Gunma Health Sci 27:1–16
    [Google Scholar]
  10. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [CrossRef]
    [Google Scholar]
  11. Kämpfer P., Steiof M., Dott W. 1991; Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21:227–251 [CrossRef]
    [Google Scholar]
  12. Kämpfer P., Dreyer U., Neef A., Dott W., Busse H.-J. 2003; Chryseobacterium defluvii sp. nov., isolated from wastewater. Int J Syst Evol Microbiol 53:93–97 [CrossRef]
    [Google Scholar]
  13. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef]
    [Google Scholar]
  14. Mergaert J., Cnockaert M. C., Swings J. 2002; Fulvimonas soli gen. nov. sp. nov., a γ -proteobacterium isolated from soil after enrichment on acetylated starch plastic. Int J Syst Evol Microbiol 52:1285–1289 [CrossRef]
    [Google Scholar]
  15. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  16. Olsen G. J., Matsuda H., Hagstrom R., Overbeek R. 1994; fastDNAml: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput Appl Biosci 10:41–48
    [Google Scholar]
  17. Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., Glöckner F. O. 2007; SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with arb. Nucleic Acids Res 35:7188–7196 [CrossRef]
    [Google Scholar]
  18. Stolz A., Busse H.-J., Kämpfer P. 2007; Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 57:572–576 [CrossRef]
    [Google Scholar]
  19. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef]
    [Google Scholar]
  20. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  21. Tindall B. J. 1990a; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [CrossRef]
    [Google Scholar]
  22. Tindall B. J. 1990b; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [CrossRef]
    [Google Scholar]
  23. Yang P., De Vos P., Kersters K., Swings J. 1993; Polyamine patterns as chemotaxonomic markers for the genus Xanthomonas . Int J Syst Bacteriol 43:709–714 [CrossRef]
    [Google Scholar]
  24. Young C.-C., Kämpfer P., Ho M.-J., Busse H.-J., Huber B. E., Arun A. B., Shen F.-T., Lai W.-A., Rekha P. D. 2007; Arenimonas malthae sp. nov., a gammaproteobacterium isolated from an oil-contaminated site. Int J Syst Evol Microbiol 57:2790–2793 [CrossRef]
    [Google Scholar]
  25. Ziemke F., Höfle M. G., Lalucat J., Rosselló-Mora R. 1998; Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48:179–186 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.014548-0
Loading
/content/journal/ijsem/10.1099/ijs.0.014548-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error