sp. nov., a moderate halophile isolated from the saline lake Laguna Colorada in Bolivia Free

Abstract

A moderately halophilic, motile, Gram-negative, rod-shaped bacterium, strain LC6, was isolated from a water sample of lake Laguna Colorada in the Bolivian Andes. The major cellular fatty acids were C 7, iso-C 7 2-OH, C and C 3-OH. The respiratory ubiquinones found in strain LC6 were Q-9 (97 %) and Q-8 (3 %). Strain LC6 was aerobic, heterotrophic, and able to utilize various carbohydrates and other substrates as carbon source. The G+C content of the genomic DNA of strain LC6 was 52.5 mol%. The organism was able to grow at pH 6.0–11.0 (optimum, pH 7.0–8.0), at 4–45 °C (optimum, 30–35 °C) and in the presence of 0.5–20 % (w/v) NaCl (optimum, 1–3 %, w/v). Based on 16S rRNA gene sequence analysis, strain LC6 was most closely related to DSM 15725 and DSM 4743 (98.8 % similarity), followed by DSM 30161, DSM 15723 and DSM 5425 (98.4 %). However, levels of DNA–DNA relatedness between strain LC6 and the above type strains were low (<31 %). Strain LC6 resembled recognized species with respect to various physiological, biochemical and nutritional characteristics. Combined phenotypic data and DNA–DNA hybridization data supported the conclusion that strain LC6 represents a novel species of the genus , for which the name is proposed. The type strain is LC6 (=CCUG 54844=LMG 24243=DSM 19434).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.014522-0
2010-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/4/749.html?itemId=/content/journal/ijsem/10.1099/ijs.0.014522-0&mimeType=html&fmt=ahah

References

  1. Arahal D. R., Ludwig W., Schleifer K. H., Ventosa A. 2002; Phylogeny of the family Halomonadaceae based on 23S and 16S rDNA sequence analyses. Int J Syst Evol Microbiol 52:241–249
    [Google Scholar]
  2. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1997; A rapid method for base ratio determination of bacterial DNA. Anal Biochem 81:461–466
    [Google Scholar]
  3. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridisation from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  4. Escara J. F., Hutton J. R. 1980; Thermal stability and renaturation of DNA in dimethylsulphoxide solutions: acceleration of renaturation rate. Biopolymers 19:1315–1327 [CrossRef]
    [Google Scholar]
  5. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  6. Jahnke K. D. 1992; basic computer program for evaluation of spectroscopic DNA renaturation data from GILFORD SYSTEM 2600 spectrophotometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73 [CrossRef]
    [Google Scholar]
  7. Johnson J. L. 1994; Similarity analysis of DNAs. In Methods for General and Molecular Bacteriology . pp 655–682 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
  8. Kaye J. Z., Márquez M. C., Ventosa A., Baross J. A. 2004; Halomonas neptunia sp. nov., Halomonas sulfidaeris sp. nov., Halomonas axialensis sp. nov. and Halomonas hydrothermalis sp. nov.: halophilic bacteria isolated from deep-sea hydrothermal-vent environments. Int J Syst Evol Microbiol 54:499–511 [CrossRef]
    [Google Scholar]
  9. Kumar S., Tamura K., Jakobsen I. B., Nei M. 2001; mega2: molecular evolutionary genetic analysis software. Bioinformatics 17:1244–1245 [CrossRef]
    [Google Scholar]
  10. Maidak B. L., Coloe J. R., Lilburn T. G., Parker C. T. Jr, Saxman P. R., Stredwick J. M., Garrity G. M., Li B., Olsen G. J. other authors 2000; The RDP (Ribosomal Database Project) continues. Nucleic Acids Res 28:173–174 [CrossRef]
    [Google Scholar]
  11. Mata J. A., Martínez-Cánovas J., Quesada E., Victoria B. 2002; A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 25:360–375 [CrossRef]
    [Google Scholar]
  12. Mesbah M., Premachandran U., Whitman W. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  13. Oren A. 2002; Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:56–63 [CrossRef]
    [Google Scholar]
  14. Quillaguamán J., Hatti-Kaul R., Mattiasson B., Alvarez M. T., Delgado O. 2004; Halomonas boliviensis sp. nov., an alkalitolerant, moderate halophile isolated from soil around a Bolivian hypersaline lake. Int J Syst Evol Microbiol 54:721–725 [CrossRef]
    [Google Scholar]
  15. Sánchez-Porro C., Martín S., Mellado E., Ventosa A. 2003; Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. J Appl Microbiol 94:295–300 [CrossRef]
    [Google Scholar]
  16. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology . pp 611–651 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
  17. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  18. Ventosa A., Quesada E., Rodríguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A. 1982; Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 128:1959–1968
    [Google Scholar]
  19. Vreeland R. H., Litchfield C. D., Martin E. L., Elliot E. 1980; Halomonas elongata , a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol 30:485–495 [CrossRef]
    [Google Scholar]
  20. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.014522-0
Loading
/content/journal/ijsem/10.1099/ijs.0.014522-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed