1887

Abstract

A moderately halophilic, motile, Gram-negative, rod-shaped bacterium, strain LC6, was isolated from a water sample of lake Laguna Colorada in the Bolivian Andes. The major cellular fatty acids were C 7, iso-C 7 2-OH, C and C 3-OH. The respiratory ubiquinones found in strain LC6 were Q-9 (97 %) and Q-8 (3 %). Strain LC6 was aerobic, heterotrophic, and able to utilize various carbohydrates and other substrates as carbon source. The G+C content of the genomic DNA of strain LC6 was 52.5 mol%. The organism was able to grow at pH 6.0–11.0 (optimum, pH 7.0–8.0), at 4–45 °C (optimum, 30–35 °C) and in the presence of 0.5–20 % (w/v) NaCl (optimum, 1–3 %, w/v). Based on 16S rRNA gene sequence analysis, strain LC6 was most closely related to DSM 15725 and DSM 4743 (98.8 % similarity), followed by DSM 30161, DSM 15723 and DSM 5425 (98.4 %). However, levels of DNA–DNA relatedness between strain LC6 and the above type strains were low (<31 %). Strain LC6 resembled recognized species with respect to various physiological, biochemical and nutritional characteristics. Combined phenotypic data and DNA–DNA hybridization data supported the conclusion that strain LC6 represents a novel species of the genus , for which the name is proposed. The type strain is LC6 (=CCUG 54844=LMG 24243=DSM 19434).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.014522-0
2010-04-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/4/749.html?itemId=/content/journal/ijsem/10.1099/ijs.0.014522-0&mimeType=html&fmt=ahah

References

  1. Arahal, D. R., Ludwig, W., Schleifer, K. H. & Ventosa, A. ( 2002; ). Phylogeny of the family Halomonadaceae based on 23S and 16S rDNA sequence analyses. Int J Syst Evol Microbiol 52, 241–249.
    [Google Scholar]
  2. Cashion, P., Holder-Franklin, M. A., McCully, J. & Franklin, M. ( 1997; ). A rapid method for base ratio determination of bacterial DNA. Anal Biochem 81, 461–466.
    [Google Scholar]
  3. De Ley, J., Cattoir, H. & Reynaerts, A. ( 1970; ). The quantitative measurement of DNA hybridisation from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef]
    [Google Scholar]
  4. Escara, J. F. & Hutton, J. R. ( 1980; ). Thermal stability and renaturation of DNA in dimethylsulphoxide solutions: acceleration of renaturation rate. Biopolymers 19, 1315–1327.[CrossRef]
    [Google Scholar]
  5. Huß, V. A. R., Festl, H. & Schleifer, K. H. ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef]
    [Google Scholar]
  6. Jahnke, K. D. ( 1992; ). basic computer program for evaluation of spectroscopic DNA renaturation data from GILFORD SYSTEM 2600 spectrophotometer on a PC/XT/AT type personal computer. J Microbiol Methods 15, 61–73.[CrossRef]
    [Google Scholar]
  7. Johnson, J. L. ( 1994; ). Similarity analysis of DNAs. In Methods for General and Molecular Bacteriology, pp. 655–682. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  8. Kaye, J. Z., Márquez, M. C., Ventosa, A. & Baross, J. A. ( 2004; ). Halomonas neptunia sp. nov., Halomonas sulfidaeris sp. nov., Halomonas axialensis sp. nov. and Halomonas hydrothermalis sp. nov.: halophilic bacteria isolated from deep-sea hydrothermal-vent environments. Int J Syst Evol Microbiol 54, 499–511.[CrossRef]
    [Google Scholar]
  9. Kumar, S., Tamura, K., Jakobsen, I. B. & Nei, M. ( 2001; ). mega2: molecular evolutionary genetic analysis software. Bioinformatics 17, 1244–1245.[CrossRef]
    [Google Scholar]
  10. Maidak, B. L., Coloe, J. R., Lilburn, T. G., Parker, C. T., Jr, Saxman, P. R., Stredwick, J. M., Garrity, G. M., Li, B., Olsen, G. J. & other authors ( 2000; ). The RDP (Ribosomal Database Project) continues. Nucleic Acids Res 28, 173–174.[CrossRef]
    [Google Scholar]
  11. Mata, J. A., Martínez-Cánovas, J., Quesada, E. & Victoria, B. ( 2002; ). A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 25, 360–375.[CrossRef]
    [Google Scholar]
  12. Mesbah, M., Premachandran, U. & Whitman, W. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  13. Oren, A. ( 2002; ). Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28, 56–63.[CrossRef]
    [Google Scholar]
  14. Quillaguamán, J., Hatti-Kaul, R., Mattiasson, B., Alvarez, M. T. & Delgado, O. ( 2004; ). Halomonas boliviensis sp. nov., an alkalitolerant, moderate halophile isolated from soil around a Bolivian hypersaline lake. Int J Syst Evol Microbiol 54, 721–725.[CrossRef]
    [Google Scholar]
  15. Sánchez-Porro, C., Martín, S., Mellado, E. & Ventosa, A. ( 2003; ). Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. J Appl Microbiol 94, 295–300.[CrossRef]
    [Google Scholar]
  16. Smibert, R. M. & Krieg, N. R. ( 1994; ). Phenotypic characterization. In Methods for General and Molecular Bacteriology, pp. 611–651. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  17. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  18. Ventosa, A., Quesada, E., Rodríguez-Valera, F., Ruiz-Berraquero, F. & Ramos-Cormenzana, A. ( 1982; ). Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 128, 1959–1968.
    [Google Scholar]
  19. Vreeland, R. H., Litchfield, C. D., Martin, E. L. & Elliot, E. ( 1980; ). Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol 30, 485–495.[CrossRef]
    [Google Scholar]
  20. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.014522-0
Loading
/content/journal/ijsem/10.1099/ijs.0.014522-0
Loading

Data & Media loading...

Supplements

vol. , part 4, pp. 749 - 753

 



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error