1887

Abstract

We have carried out a polyphasic taxonomic characterization of the type strains of the species with the recently validated name , together with two species that were phylogenetically closely related, and . 16S rRNA gene sequence analyses showed that they constituted a coherent cluster, with sequence similarities between 98.7 and 97.7 %. We have determined the almost complete 23S rRNA gene sequences of these three type strains, and the percentage of similarity between them was 99.2–97.6 %. Phylogenetic trees based on the 16S rRNA and 23S rRNA gene sequences, obtained by using three different algorithms, were consistent and showed that these three species constituted a cluster separated from the other species of the genera of the family , supporting their placement in a single genus. All three species have ubiquinone 9 as the major respiratory quinone, and showed similar fatty acid and polar lipid profiles. The level of DNA–DNA hybridization between DSM 19940, DSM 18044 and CECT 5903 was 41–21 %, indicating that they are different species of the genus . A comparative phenotypic study of these strains following the proposed minimal standards for describing new taxa of the family has been carried out. The phenotypic data are consistent with the placement of these three species in a single genus and support their differentiation at the species level. On the basis of these data we have emended the description of the species and we propose to transfer the species and to the genus , as comb. nov. (type strain M27 =KCTC 12664 =DSM 18044) and nom. nov. (type strain CG4.1 =CECT 5903 =LMG 23626), respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.014480-0
2010-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/4/963.html?itemId=/content/journal/ijsem/10.1099/ijs.0.014480-0&mimeType=html&fmt=ahah

References

  1. Aguilera M., Cabrera A., Incerti C., Fuentes S., Russell N. J., Ramos-Cormenzana A., Monteoliva-Sánchez M. 2007; Chromohalobacter salarius sp. nov., a moderately halophilic bacterium isolated from a solar saltern in Cabo de Gata, Almería, southern Spain. Int J Syst Evol Microbiol 57:1238–1242 [CrossRef]
    [Google Scholar]
  2. Anan'ina L. N., Plotnikova E. G., Gavrish E. Yu., Demakov V. A., Evtushenko L. I. 2007; Salinicola socius gen. nov., sp. nov., a moderately halophilic bacterium from a naphthalene-utilizing microbial association. Mikrobiologiia 76:369–376 (in Russian
    [Google Scholar]
  3. Anan'ina L. N., Plotnikova E. G., Gavrish E. Yu., Demakov V. A., Evtushenko L. I. 2008; Salinicola socius sp. nov. In List of New Names and New Combinations Previously Effectively, but not Validly, Published , Validation List no. 124. Int J Syst Evol Microbiol 58:2471–2472 [CrossRef]
    [Google Scholar]
  4. Arahal D. R., Ventosa A. 2005; The family Halomonadaceae . In The Prokaryotes: an Evolving Electronic Resource for the Microbiological Community , 3rd edn, release 3.20. Edited by Dworkin M. New York: Springer;
    [Google Scholar]
  5. Arahal D. R., García M. T., Ludwig W., Schleifer K. H., Ventosa A. 2001a; Transfer of Halomonas canadensis and Halomonas israelensis to the genus Chromohalobacter , as Chromohalobacter canadensis comb. nov. and Chromohalobacter israelensis comb. nov. Int J Syst Evol Microbiol 51:1443–1448
    [Google Scholar]
  6. Arahal D. R., García M. T., Vargas C., Cánovas D., Nieto J. J., Ventosa A. 2001b; Chromohalobacter salexigens sp. nov., a moderately halophilic species that includes Halomonas elongata DSM 3043 and ATCC 33174. Int J Syst Evol Microbiol 51:1457–1462
    [Google Scholar]
  7. Arahal D. R., Castillo A. M., Ludwig W., Schleifer K. H., Ventosa A. 2002a; Proposal of Cobetia marina gen. nov., comb. nov., within the family Halomonadaceae , to include the species Halomonas marina . Syst Appl Microbiol 25:207–211 [CrossRef]
    [Google Scholar]
  8. Arahal D. R., Ludwig W., Schleifer K. H., Ventosa A. 2002b; Phylogeny of the family Halomonadaceae based on 23S and 16S rDNA sequence analyses. Int J Syst Evol Microbiol 52:241–249
    [Google Scholar]
  9. Arahal D. R., Vreeland R. H., Litchfield C. D., Mormile M. R., Tindall B. J., Oren A., Bejar V., Quesada E., Ventosa A. 2007; Recommended minimal standards for describing new taxa of the family Halomonadaceae . Int J Syst Evol Microbiol 57:2436–2446 [CrossRef]
    [Google Scholar]
  10. Baker F. J. 1967 Handbook of Bacteriological Technique , 2nd edn. London: Butterworths;
    [Google Scholar]
  11. Bauer A. W., Kirby W. M. M., Sherris J. C., Turck M. 1966; Antibiotic susceptibility testing by a standarized single disk method. Am J Clin Pathol 45:493–496
    [Google Scholar]
  12. Ben Ali Gam Z., Abdelkafi S., Casalot L., Tholozan J. L., Oueslati R., Labat M. 2007; Modicisalibacter tunisiensis gen. nov., sp. nov., an aerobic, moderately halophilic bacterium isolated from an oilfield-water injection sample, and emended description of the family Halomonadaceae Franzmann et al. 1989 emend Dobson and Franzmann 1996 emend. Ntougias et al. 2007. Int J Syst Evol Microbiol 57:2307–2313 [CrossRef]
    [Google Scholar]
  13. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y.-W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [CrossRef]
    [Google Scholar]
  14. Cowan S. T., Steel K. J. 1965 Manual for the Identification of Medical Bacteria London: Cambridge University Press;
    [Google Scholar]
  15. De Ley J., Tijtgat R. 1970; Evaluation of membrane filter methods for DNA-DNA hybridization. Antonie van Leeuwenhoek 36:461–474 [CrossRef]
    [Google Scholar]
  16. Franzmann P. D., Wehmeyer U., Stackerbrandt E. 1988; Halomonadaceae fam. nov., a new family of the class Proteobacteria to accommodate the genera Halomonas and Deleya . Syst Appl Microbiol 11:16–19 [CrossRef]
    [Google Scholar]
  17. Garriga M., Ehrmann M. A., Arnau J., Hugas M., Vogel R. F. 1998; Carnimonas nigrificans gen. nov., sp. nov., a bacterial causative agent for black spot formation on cured meat products. Int J Syst Bacteriol 48:677–686 [CrossRef]
    [Google Scholar]
  18. Johnson J. L. 1994; Similarity analysis of DNAs. In Methods for General and Molecular Bacteriology pp 655–682 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  19. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [CrossRef]
    [Google Scholar]
  20. Kim K. K., Jin L., Yang H. C., Lee S.-T. 2007; Halomonas gomseomensis sp. nov., Halomonas janggokensis sp.nov., Halomonas salaria sp. nov. and Halomonas denitrificans sp. nov., moderately halphilic bacteria isolated from saline water. Int J Syst Evol Microbiol 57:675–681 [CrossRef]
    [Google Scholar]
  21. Koser S. A. 1923; Utilization of the salts of organic acids by the colon-aerogenes group. J Bacteriol 8:493–520
    [Google Scholar]
  22. Ludwig W., Strunk O., Klugbauer S., Klugbauer N., Weizenernegger M., Neumaier J., Bachleitner M., Schleifer K.-H. 1998; Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19:554–568 [CrossRef]
    [Google Scholar]
  23. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef]
    [Google Scholar]
  24. Mata J. A., Martínez-Canovas M. J., Quesada E., Béjar V. 2002; A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 25:360–375 [CrossRef]
    [Google Scholar]
  25. Miller L. T. 1982; Single derivation method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxyl acids. J Clin Microbiol 16:584–586
    [Google Scholar]
  26. Ntougias S., Zervakis G. I., Fasseas C. 2007; Halotalea alkalilenta gen. nov., sp. nov., a novel osmotolerant and alkalitolerant bacterium from alkaline olive mill wastes, and emended description of the family Halomonadaceae Franzmann et al. 1989, emend. Dobson and Franzmann 1996. Int J Syst Evol Microbiol 57:1975–1983 [CrossRef]
    [Google Scholar]
  27. Okamoto T., Taguchi H., Nakamura K., Ikenaga H., Kuraishi H., Yamasato K. 1993; Zymobacter palmae gen. nov., sp. nov., a new ethanol-fermenting peritrichous bacterium isolated from palm sap. Arch Microbiol 160:333–337
    [Google Scholar]
  28. Quesada E., Ventosa A., Ruiz-Berraquero F., Ramos-Cormenzana A. 1984; Deleya halophila , a new species of moderately halophilic bacteria. Int J Syst Bacteriol 34:287–292 [CrossRef]
    [Google Scholar]
  29. Sánchez-Porro C., de la Haba R. R., Soto-Ramírez N., Márquez M. C., Montalvo-Rodríguez R., Ventosa A. 2009; Description of Kushneria aurantia gen. nov., sp. nov., a novel member of the family Halomonadaceae , and a proposal for reclassification of Halomonas marisflavi as Kushneria marisflavi comb. nov., of Halomonas indalinina as Kushneria indalinina comb. nov. and of Halomonas avacenniae as Kushneria avicenniae comb. nov. Int J Syst Evol Microbiol 59:397–405 [CrossRef]
    [Google Scholar]
  30. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  31. Stackebrandt E., Fredericksen W., Garrity G. M., Kämpfer P., Maiden M. C. J., Nesme X., Rosselló-Mora R., Swings J., Grimont P. A. D. other authors 2002; Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047 [CrossRef]
    [Google Scholar]
  32. Ventosa A., Quesada E., Rodriguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A. 1982; Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 128:1959–1968
    [Google Scholar]
  33. Ventosa A., Gutierrez M. C., Garcia M. T., Ruiz-Berraquero F. 1989; Classification of ‘ Chromobacterium marismortui ’ in a new genus, Chromohalobacter gen. nov., as Chromohalobacter marismortui comb. nov., nom. rev. Int J Syst Bacteriol 39:382–386 [CrossRef]
    [Google Scholar]
  34. Vreeland R. H. 2005; Genus I. Halomonas . In Bergey's Manual of Systematic Bacteriology , 2nd edn. vol 2 pp 300–313 Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M. New York: Springer;
    [Google Scholar]
  35. Vreeland R. H., Litchfield C. D., Martin E. L., Elliot E. 1980; Halomonas elongata , a new genus and species of extremely salt tolerant bacteria. Int J Syst Bacteriol 30:485–495 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.014480-0
Loading
/content/journal/ijsem/10.1099/ijs.0.014480-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error