1887

Abstract

A novel extremely halophilic archaeon, strain 194-10, was isolated from a solar salt sample imported into Japan from the Philippines. Strain 194-10 was pleomorphic, neutrophilic and mesophilic and required at least 10 % (w/v) NaCl but no MgSO . 7HO for growth; it exhibited optimal growth at 15 % (w/v) NaCl and 60 mM MgSO . 7HO. Strain 194-10 grew at 20–45 °C (optimum, 30 °C) and pH 6.0–9.0 (optimum, pH 6.5–7.0). The G+C content of its DNA was 59.8 mol%. 16S rRNA gene sequence analysis revealed closest proximity to XH-48 (98.5 % similarity), the sole representative of the genus . Polar lipid analysis revealed that strain 194-10 contained phosphatidylglycerol and phosphatidylglycerol phosphate methyl ester (the latter derived from both CC and CC archaeol) and several unidentified glycolipids. The results of DNA–DNA hybridization (20.7 % relatedness between JCM 13463 and strain 194-10) and physiological and biochemical characteristics allowed differentiation of strain 194-10 from XH-48. Therefore, strain 194-10 represents a novel species of the genus , for which the name sp. nov. is proposed, with the type strain 194-10 (=DSM 22427 =JCM 16110 =CECT 7536).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.014449-0
2010-12-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/12/2828.html?itemId=/content/journal/ijsem/10.1099/ijs.0.014449-0&mimeType=html&fmt=ahah

References

  1. Castillo, A. M., Gutierrez, M. C., Kamekura, M., Xue, Y., Ma, Y., Cowan, D. A., Jones, B. E., Grant, W. D. & Ventosa, A. ( 2006; ). Halostagnicola larsenii gen. nov., sp. nov., an extremely halophilic archaeon from a saline lake in Inner Mongolia, China. Int J Syst Evol Microbiol 56, 1519–1524.[CrossRef]
    [Google Scholar]
  2. Cline, S. W., Schalkwyk, L. C. & Doolittle, W. F. ( 1989; ). Transformation of the archaebacterium Halobacterium volcanii with genomic DNA. J Bacteriol 171, 4987–4991.
    [Google Scholar]
  3. Dussault, H. P. ( 1955; ). An improved technique for staining red halophilic bacteria. J Bacteriol 70, 484–485.
    [Google Scholar]
  4. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  5. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  6. Fukushima, T., Usami, R. & Kamekura, M. ( 2007; ). A traditional Japanese-style salt field is a niche for haloarchaeal strains that can survive in 0.5 % salt solution. Saline Syst 3, 2.[CrossRef]
    [Google Scholar]
  7. Gonzalez, C., Gutierrez, C. & Ramírez, C. ( 1978; ). Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 24, 710–715.[CrossRef]
    [Google Scholar]
  8. Grant, W. D., Kamekura, M., McGenity, T. J. & Ventosa, A. ( 2001; ). Order I. Halobacteriales Grant and Larsen 1989b, 495VP (effective publication: Grant and Larsen 1989a, 2216). In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1, pp. 294–299. Edited by Boone, D. R., Castenholz, R. W. & Garrity, G. M.. New York. : Springer.
    [Google Scholar]
  9. Kamekura, M. ( 1993; ). Lipids of extreme halophiles. In The Biology of Halophilic Bacteria, pp. 135–161. Edited by Vreeland, R. H. & Hochstein, L. I.. Boca Raton, FL. : CRC Press.
    [Google Scholar]
  10. Minnikin, D. E., O'Donnell, A. G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A. & Parlett, J. H. ( 1984; ). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2, 233–241.[CrossRef]
    [Google Scholar]
  11. Miyazaki, S., Sugawara, H., Gojobori, T. & Tateno, Y. ( 2003; ). DNA Data Bank of Japan (DDBJ) in XML. Nucleic Acids Res 31, 13–16.[CrossRef]
    [Google Scholar]
  12. Oren, A., Ventosa, A. & Grant, W. D. ( 1997; ). Proposed minimal standards for description of new taxa in the order Halobacteriales. Int J Syst Bacteriol 47, 233–238.[CrossRef]
    [Google Scholar]
  13. Oren, A., Arahal, D. R. & Ventosa, A. ( 2009; ). Emended descriptions of genera of the family Halobacteriaceae. Int J Syst Evol Microbiol 59, 637–642.[CrossRef]
    [Google Scholar]
  14. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  15. Savage, K. N., Krumholz, L. R., Oren, A. & Elshahed, M. S. ( 2008; ). Halosarcina pallida gen. nov., sp. nov., a halophilic archaeon from a low-salt, sulfide-rich spring. Int J Syst Evol Microbiol 58, 856–860.[CrossRef]
    [Google Scholar]
  16. Smibert, R. M. & Krieg, N. R. ( 1981; ). General characterization. In Manual of Methods for General Microbiology, pp. 409–443. Edited by Gerhardt, P., Murray, R. G. E., Costilow, R. N., Nester, E. W., Wood, W. A., Krieg, N. R. & Phillips, G. B.. Washington, DC. : American Society for Microbiology.
    [Google Scholar]
  17. Stackebrandt, E. & Ebers, J. ( 2006; ). Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33, 152–155.
    [Google Scholar]
  18. Stamatakis, A., Ludwig, T. & Meier, H. ( 2005; ). RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21, 456–463.[CrossRef]
    [Google Scholar]
  19. Tamaoka, J. ( 1994; ). Determination of DNA base composition. In Chemical Methods in Prokaryotic Systematics, pp. 463–470. Edited by Goodfellow, M. & O'Donnell, A. G.. Chichester. : Wiley.
    [Google Scholar]
  20. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.014449-0
Loading
/content/journal/ijsem/10.1099/ijs.0.014449-0
Loading

Data & Media loading...

Supplements

Phylogenetic tree reconstructed by the maximum-likelihood method derived from 16S rRNA gene sequences showing the position of strain 194-10 among haloarchaea. [PDF](41 KB)

PDF

Thin-layer chromatograms of polar lipids extracted from strain 194-10 and some other haloarchaea. (A, B) Total polar lipids of strain 194-10 , detected by spraying the plate with α-naphthol reagent and then with sulfuric acid/ethanol (1:1), followed by heating at 160 °C. Circled spots are glycolipids. (C) Phospholipids only, detected by spraying the plate with Dittmer–Lester reagent. Lanes: (A) a, JCM 8978 ; b, JCM 13463 ; c, strain 194-10 ; (B, C) 1, JCM 11081; 2, JCM 13463 ; 3, strain 194-10 ; 4, JCM 9576 ; 5, JCM 9101 . PG, Phosphatidylglycerol; PGP-Me, phosphatidylglycerol phosphate methyl ester; S -DGA, disulfated diglycosyl archaeol; S-TGA, sulfated triglycosyl archaeol; S-TeGA, sulfated tetraglycosyl archaeol.

IMAGE

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error