1887

Abstract

Two bacterial strains, MC-246 and MC-247, were isolated from municipal urban waste compost and characterized by a polyphasic approach. Both isolates were Gram-stain-variable, endospore-forming rods that were catalase-, oxidase- and -galactosidase-positive, and able to grow at 25–50 °C and pH 7.0–9.0, with optimum growth at 37 °C and pH 7. The predominant cellular fatty acids were anteiso-C, iso-C, iso-C, anteiso-C and iso-C; the major respiratory quinone was menaquinone MK-7; the cell wall peptidoglycan was of type A1; and the DNA G+C content was 49 mol%. These characteristics, as well as data from 16S RNA gene sequence analysis, showed that these strains were affiliated with the genus ; the type strains of and were among their closest neighbours (<94.2 % sequence similarity). Nevertheless, the hypothesis that strains MC-246 and MC-247 could represent a novel species was supported by the low 16S rRNA gene sequence similarity values shared with other members of the genus and by the observation of distinct biochemical and physiological traits. Strains MC-246 and MC-247 shared 99.6 % 16S rRNA gene sequence similarity and showed almost identical MALDI-TOF mass spectra, but could be distinguished at the phenotypic and genotypic level. However, DNA–DNA hybridization between strains MC-246 and MC-247 resulted in values above 70 % indicating that both organisms represent a single species, for which the name sp. nov. is proposed; the type strain is MC-246 (=DSM 22072 =CCUG 57263).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.014290-0
2010-10-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/10/2415.html?itemId=/content/journal/ijsem/10.1099/ijs.0.014290-0&mimeType=html&fmt=ahah

References

  1. Ash C., Priest F. G., Collins M. D. 1993; Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus . Antonie van Leeuwenhoek 64:253–260
    [Google Scholar]
  2. Bruce J. 1996; Automated system rapidly identifies and characterizes microorganisms in food. Food Technol 50:77–81
    [Google Scholar]
  3. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  4. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  5. Euzéby J. P. 1997; List of bacterial names with standing in nomenclature: a folder available on the Internet. Int J Syst Bacteriol 47:590–592 http://www.bacterio.net [CrossRef]
    [Google Scholar]
  6. Fehr M. 2007; Confirming decentralised composting as a definite option in urban waste management. Int J Environ Technol Manag 7:274–285 [CrossRef]
    [Google Scholar]
  7. Ferreira da Silva M., Tiago I., Veríssimo A., Boaventura A. R., Nunes O. C., Manaia C. M. 2006; Antibiotic resistance of enterococci and related bacteria in an urban wastewater treatment plant. FEMS Microbiol Ecol 55:322–329 [CrossRef]
    [Google Scholar]
  8. Ferreira da Silva M., Vaz-Moreira I., Gonzalez-Pajuelo M., Nunes O. C., Manaia C. M. 2007; Antimicrobial resistance patterns in Enterobacteriaceae isolated from an urban wastewater treatment plant. FEMS Microbiol Ecol 60:166–176 [CrossRef]
    [Google Scholar]
  9. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  10. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol 3 pp 21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  11. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [CrossRef]
    [Google Scholar]
  12. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  13. Murray R. G. E., Doetsch R. N., Robinow F. 1994; Determinative and cytological light microscopy. In Methods for General and Molecular Bacteriology pp 21–41 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  14. Rhuland L. E., Work E., Denman R. F., Hoare D. S. 1955; The behavior of the isomers of α , ϵ-diaminopimelic acid on paper chromatograms. J Am Chem Soc 77:4844–4846 [CrossRef]
    [Google Scholar]
  15. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477
    [Google Scholar]
  16. Schleifer K. H., Seidl P. H. 1985; Chemical composition and structure of murein. In Chemical Methods in Bacterial Systematics pp 201–215 Edited by Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  17. Shida O., Takagi H., Kadowaki K., Nakamura L. K., Komagata K. 1997; Transfer of Bacillus alginolyticus , Bacillus chondroitinus , Bacillus curdlanolyticus , Bacillus glucanolyticus , Bacillus kobensis , and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus . Int J Syst Bacteriol 47:289–298 [CrossRef]
    [Google Scholar]
  18. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology. pp 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
  19. Takeda M., Kamagata Y., Shinmaru S., Nishiyama T., Koizumi J. 2002; Paenibacillus koleovorans sp. nov., able to grow on the sheath of Sphaerotilus natans . Int J Syst Evol Microbiol 52:1597–1601 [CrossRef]
    [Google Scholar]
  20. Tiago I., Teixeira I., Silva S., Chung P., Veríssimo A., Manaia C. M. 2004; Metabolic and genetic diversity of mesophilic and thermophilic bacteria isolated from composted municipal sludge on poly-ϵ-caprolactones. Curr Microbiol 49:407–414 [CrossRef]
    [Google Scholar]
  21. Tindall B. J. 1989; Fully saturated menaquinones in the archaebacterium Pyrobaculum islandicum . FEMS Microbiol Lett 60:251–254 [CrossRef]
    [Google Scholar]
  22. Tóth E. M., Schumann P., Borsodi A. K., Kéki Z., Kovács A. L., Márialigeti K. 2008; Wohlfahrtiimonas chitiniclastica gen. nov., sp. nov., a new gammaproteobacterium isolated from Wohlfahrtia magnifica (Diptera: Sarcophagidae). Int J Syst Evol Microbiol 58:976–981 [CrossRef]
    [Google Scholar]
  23. Vaz-Moreira I., Nobre M. F., Nunes O. C., Manaia C. M. 2007 Gulbenkiania mobilis gen. nov., sp. nov., isolated from treated municipal wastewater. Int J Syst Evol Microbiol 57, 1108–1112 [CrossRef]
  24. Vaz-Moreira I., Silva E., Manaia C. M., Nunes O. C. 2008; Diversity of bacterial isolates from commercial and homemade composts. Microb Ecol 55:714–722 [CrossRef]
    [Google Scholar]
  25. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.014290-0
Loading
/content/journal/ijsem/10.1099/ijs.0.014290-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Supplementary material 4

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error