1887

Abstract

An aerobic, Gram-negative, yellow-pigmented bacterial strain, designated 0533, was isolated from frozen soil from the China No. 1 glacier. Phylogenetic analysis of the 16S rRNA gene sequence demonstrated that strain 0533 was a member of the genus and exhibited 97.1–98.7 % 16S rRNA sequence similarity with its nearest phylogenetic neighbours. Strain 0533 exhibited phenotypic and chemotaxonomic characteristics common to the genus : menaquinone-6 (MK-6) was the predominant quinone and iso-C, C 6, anteiso-C, iso-C 3-OH, C 6, iso-C 3-OH, summed feature 3 (comprising C 7 and/or C 6), iso-C G and iso-C 3-OH were the major fatty acids (>5 %). The DNA G+C content was 32.5 mol%. On the basis of phenotypic and genotypic data, a novel species, sp. nov., is proposed. The type strain is 0533 (=CGMCC 1.8704 =JCM 16398).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.014126-0
2011-01-01
2020-01-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/1/20.html?itemId=/content/journal/ijsem/10.1099/ijs.0.014126-0&mimeType=html&fmt=ahah

References

  1. Bergey, D. H., Harrison, F. C., Breed, R. S., Hammer, B. W. & Huntoon, F. M. (editors) ( 1923; ). Genus II. Flavobacterium gen. nov. In Bergey's Manual of Determinative Bacteriology, pp. 97–117. Baltimore. : Williams & Wilkins.
    [Google Scholar]
  2. Bernardet, J. F. & Bowman, J. P. ( 2006; ). The genus Flavobacterium. In The Prokaryotes: a Handbook on the Biology of Bacteria, 3rd edn, vol. 7, pp. 481–531. Edited by Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K. H. & Stackebrandt, E.. New York. : Springer.
    [Google Scholar]
  3. Bernardet, J.-F., Segers, P., Vancanneyt, M., Berthe, F., Kersters, K. & Vandamme, P. ( 1996; ). Cutting a Gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol 46, 128–148.[CrossRef]
    [Google Scholar]
  4. Bernardet, J. F., Nakagawa, Y. & Holmes, B. ( 2002; ). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52, 1049–1070.[CrossRef]
    [Google Scholar]
  5. Collins, M. D. ( 1985; ). Isoprenoid quinone analysis in classification and identification. In Chemical Methods in Bacterial Systematics, pp. 267–287. Edited by Goodfellow, M. & Minnikin, D. E.. London. : Academic Press.
    [Google Scholar]
  6. De Ley, J., Cattoir, H. & Reynaerts, A. ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef]
    [Google Scholar]
  7. Felsenstein, J. ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef]
    [Google Scholar]
  8. Hugh, R. & Leifson, E. ( 1953; ). The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram-negative bacteria. J Bacteriol 66, 24–26.
    [Google Scholar]
  9. Jit, S., Dadhwal, M., Prakash, O. & Lal, R. ( 2008; ). Flavobacterium lindanitolerans sp. nov., isolated from hexachlorocyclohexane-contaminated soil. Int J Syst Evol Microbiol 58, 1665–1669.[CrossRef]
    [Google Scholar]
  10. Kim, J. H., Kim, K. Y. & Cha, C. J. ( 2009; ). Flavobacterium chungangense sp. nov., isolated from a freshwater lake. Int J Syst Evol Microbiol 59, 1754–1758.[CrossRef]
    [Google Scholar]
  11. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  12. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  13. Liu, H., Liu, R., Yang, S.-Y., Gao, W.-K., Zhang, C.-X., Zhang, K.-Y. & Lai, R. ( 2008; ). Flavobaterium anhuiense sp. nov., isolated from field soil. Int J Syst Evol Microbiol 58, 756–760.[CrossRef]
    [Google Scholar]
  14. Marmur, J. & Doty, P. ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef]
    [Google Scholar]
  15. McCammon, S. A. & Bowman, J. P. ( 2000; ). Taxonomy of Antarctic Flavobacterium species: description of Flavobacterium gillisiae sp. nov., Flavobacterium tegetincola sp. nov., and Flavobacterium xanthum sp. nov., nom. rev. and reclassification of [Flavobacterium] salegens as Salegentibacter salegens gen. nov., comb. nov. Int J Syst Evol Microbiol 50, 1055–1063.[CrossRef]
    [Google Scholar]
  16. Qu, J.-H., Li, H.-F., Yang, J.-S. & Yuan, H.-L. ( 2008; ). Flavobacterium cheniae sp. nov., isolated from sediment of a eutrophic reservoir. Int J Syst Evol Microbiol 58, 2186–2190.[CrossRef]
    [Google Scholar]
  17. Reichenbach, H. ( 1992; ). The order Cytophagales. In The Prokaryotes, 2nd edn, vol. 4, pp. 3631–3675. Edited by Balows, A., Trüper, H. G., Dworkin, M., Harder, W. & Schleifer, K. H.. New York. : Springer.
    [Google Scholar]
  18. Ryu, S.-H., Park, J.-H., Moon, J.-C., Sung, Y., Lee, S.-S. & Jeon, C.-O. ( 2008; ). Flavobacterium resistens sp. nov., isolated from stream sediment. Int J Syst Evol Microbiol 58, 2266–2270.[CrossRef]
    [Google Scholar]
  19. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  20. Smibert, R. M. & Krieg, N. R. ( 1981; ). General characterization. In Manual of Methods for General Microbiology, pp. 409–443. Edited by Gerhardt, P., Murray, R. G. E., Costilow, R. N., Nester, E. W., Wood, W. A., Krieg, N. R. & Phillips, G. B.. Washington, DC. : American Society for Microbiology.
    [Google Scholar]
  21. Tamaki, H., Hanada, S., Kamagata, Y., Nakamura, K., Nomura, N., Nakano, K. & Matsumura, M. ( 2003; ). Flavobacterium limicola sp. nov., a psychrophilic, organic-polymer-degrading bacterium isolated from freshwater sediments. Int J Syst Evol Microbiol 53, 519–526.[CrossRef]
    [Google Scholar]
  22. Van Trappen, S., Vandecandelaere, I., Mergaert, J. & Swings, J. ( 2004; ). Flavobacterium degerlachei sp. nov., Flavobacterium frigoris sp. nov. and Flavobacterium micromati sp. nov., novel psychrophilic bacteria isolated from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 54, 85–92.[CrossRef]
    [Google Scholar]
  23. Van Trappen, S., Vandecandelaere, I., Mergaert, J. & Swings, J. ( 2005; ). Flavobacterium fryxellicola sp. nov. and Flavobacterium psychrolimnae sp. nov., novel psychrophilic bacteria isolated from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 55, 769–772.[CrossRef]
    [Google Scholar]
  24. Wu, C., Lu, X., Qin, M., Wang, Y. & Ruan, J. ( 1989; ). Analysis of menaquinone compound in microbial cells by HPLC. Microbiology [English translation of Microbiology (Beijing)] 16, 176–178.
    [Google Scholar]
  25. Zhang, D.-C., Wang, H.-X., Liu, H.-C., Dong, X.-Z. & Zhou, P.-J. ( 2006; ). Flavobacterium glaciei sp. nov., a novel psychrophilic bacterium isolated from the China No.1 glacier. Int J Syst Evol Microbiol 56, 2921–2925.[CrossRef]
    [Google Scholar]
  26. Zhu, F., Wang, S. & Zhou, P. ( 2003; ). Flavobacterium xinjiangense sp. nov. and Flavobacterium omnivorum sp. nov., novel psychrophiles from the China No. 1 glacier. Int J Syst Evol Microbiol 53, 853–857.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.014126-0
Loading
/content/journal/ijsem/10.1099/ijs.0.014126-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error