1887

Abstract

A haloalkaliphilic archaeon, strain JX313, was isolated from a saline–alkaline soil from Daqing, Heilongjiang Province, China. Its morphological, physiological and biochemical features and 16S rRNA gene sequence were determined. Colonies of the strain were orange–red and cells were non-motile cocci and Gram-stain-variable. The strain required at least 1.7 M NaCl for growth, with optimal growth occurring in 2.0–2.5 M NaCl. Growth was observed at 20–50 °C and pH 8.0–10.5, with optimal growth at 35 °C and pH 10.0. The G+C content of its genomic DNA was 59.3 mol%. Phylogenetic analysis of 16S rRNA gene sequences showed that strain JX313 is associated with the genera and and is most closely related to XH-65 (96.2 % sequence similarity) and FP1 (96.2 %). DNA–DNA hybridization experiments revealed that the relatedness of strain JX313 to type strains of related species of the genus or was less than 50 %. Furthermore, the cellular polar lipids of strain JX313, identified as phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester and mannose-2,6-disulfate (1→2)-glucose glycerol diether (S-DGD), were consistent with the polar lipid characteristics of the genus . Therefore, phylogenetic analysis, phenotypic assessment and chemotaxonomic data showed that JX313 represents a novel species within the genus , for which the name sp. nov. is proposed. The type strain is JX313 (=CGMCC 1.8909 =NBRC 105739).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.013995-0
2010-10-01
2019-12-05
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/10/2267.html?itemId=/content/journal/ijsem/10.1099/ijs.0.013995-0&mimeType=html&fmt=ahah

References

  1. Cui, H. L., Tohty, D., Zhou, P. J. & Liu, S. J. ( 2006; ). Haloterrigena longa sp. nov. and Haloterrigena limicola sp. nov., extremely halophilic archaea isolated from a salt lake. Int J Syst Evol Microbiol 56, 1837–1840.[CrossRef]
    [Google Scholar]
  2. De Ley, J., Cattoir, H. & Reynaerts, A. ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef]
    [Google Scholar]
  3. Dussault, H. P. ( 1955; ). An improved technique for staining red halophilic bacteria. J Bacteriol 70, 484–485.
    [Google Scholar]
  4. Fendrihan, S., Legat, A., Pfaffenhuemer, M., Gruber, C., Weidler, G., Gerbl, F. & Stan-Lotter, H. ( 2006; ). Extremely halophilic archaea and the issue of long-term microbial survival. Rev Environ Sci Technol 5, 203–218.
    [Google Scholar]
  5. Feng, J., Zhou, P., Zhou, Y.-G., Liu, S.-J. & Warren-Rhodes, K. ( 2005; ). Halorubrum alkaliphilum sp. nov., a novel haloalkaliphile isolated from a soda lake in Xinjiang, China. Int J Syst Evol Microbiol 55, 149–152.[CrossRef]
    [Google Scholar]
  6. Grant, W. D. ( 2004; ). Introductory chapter: half a lifetime in soda lakes. In Halophilic Microorganisms, pp. 17–22. Edited by Ventosa, A.. Heidelberg. : Springer.
    [Google Scholar]
  7. Gutiérrez, M. C., Castillo, A. M., Kamekura, M. & Ventosa, A. ( 2008; ). Haloterrigena salina sp. nov., an extremely halophilic archaeon isolated from a salt lake. Int J Syst Evol Microbiol 58, 2880–2884.[CrossRef]
    [Google Scholar]
  8. Huß, V. A. R., Festl, H. & Schleifer, K. H. ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef]
    [Google Scholar]
  9. Kamekura, M. & Dyall-Smith, M. L. ( 1995; ). Taxonomy of the family Halobacteriaceae and the description of two new genera Halorubrobacterium and Natrialba. J Gen Appl Microbiol 41, 333–350.[CrossRef]
    [Google Scholar]
  10. Kamekura, M. & Kates, M. ( 1988; ). Lipids of halophilic archaebacteria. In Halophilic Bacteria II, pp. 25–54. Edited by Rodriguez-Valera, F.. Boca Raton, FL. : CRC Press.
    [Google Scholar]
  11. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  12. Marmur, J. ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef]
    [Google Scholar]
  13. Marmur, J. & Doty, P. ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef]
    [Google Scholar]
  14. McGenity, T. J., Gemmell, R. T. & Grant, W. D. ( 1998; ). Proposal of a new halobacterial genus Natrinema gen. nov., with two species Natrinema pellirubrum nom. nov. and Natrinema pallidum nom. nov. Int J Syst Bacteriol 48, 1187–1196.[CrossRef]
    [Google Scholar]
  15. Montalvo-Rodríguez, R., López-Garriga, J., Vreeland, R. H., Oren, A., Ventosa, A. & Kamekura, M. ( 2000; ). Haloterrigena thermotolerans sp. nov., a halophilic archaeon from Puerto Rico. Int J Syst Evol Microbiol 50, 1065–1071.[CrossRef]
    [Google Scholar]
  16. Oren, A. & Ventosa, A. ( 2002; ). International Committee on Systematics of Prokaryotes Subcommittee on the taxonomy of Halobacteriaceae. Minutes of the meetings, 24 September 2001, Seville, Spain. Int J Syst Evol Microbiol 52, 289–290.
    [Google Scholar]
  17. Oren, A., Ventosa, A. & Grant, W. D. ( 1997; ). Proposal of minimal standards for the description of new taxa in the order Halobacteriales. Int J Syst Bacteriol 47, 233–238.[CrossRef]
    [Google Scholar]
  18. Oren, A., Elevi, R., Watanabe, S., Ihara, K. & Corcelli, A. ( 2002; ). Halomicrobium mukohataei gen. nov., comb. nov., and emended description of Halomicrobium mukohataei. Int J Syst Evol Microbiol 52, 1831–1835.[CrossRef]
    [Google Scholar]
  19. Oren, A., Arahal, D. R. & Ventosa, A. ( 2009; ). Emended descriptions of genera of the family Halobacteriaceae. Int J Syst Evol Microbiol 59, 637–642.[CrossRef]
    [Google Scholar]
  20. Roh, S. W., Nam, Y. D., Chang, H. W., Kim, K. H., Sung, Y., Kim, M. S., Oh, H. M. & Bae, J. W. ( 2009; ). Haloterrigena jeotgali sp. nov., an extremely halophilic archaeon from salt-fermented food. Int J Syst Evol Microbiol 59, 2359–2363.[CrossRef]
    [Google Scholar]
  21. Romano, I., Poli, A., Finore, I., Huertas, F. J., Gambacorta, A., Pelliccione, S., Nicolaus, G., Lama, L. & Nicolaus, B. ( 2007; ). Haloterrigena hispanica sp. nov., an extremely halophilic archaeon from Fuente de Piedra, southern Spain. Int J Syst Evol Microbiol 57, 1499–1503.[CrossRef]
    [Google Scholar]
  22. Sehgal, S. N. & Gibbons, N. E. ( 1960; ). Effect of some metal ions on the growth of Halobacterium cutirubrum. Can J Microbiol 6, 165–169.[CrossRef]
    [Google Scholar]
  23. Tapingkae, W., Tanasupawat, S., Itoh, T., Parkin, K. L., Benjakul, S., Visessanguan, W. & Valyasevi, R. ( 2008; ). Natrinema gari sp. nov., a halophilic archaeon isolated from fish sauce in Thailand. Int J Syst Evol Microbiol 58, 2378–2383.[CrossRef]
    [Google Scholar]
  24. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  25. Ventosa, A., Gutiérrez, M. C., Kamekura, M. & Dyall-Smith, M. L. ( 1999; ). Proposal to transfer Halococcus turkmenicus, Halobacterium trapanicum JCM 9743 and strain GSL-11 to Haloterrigena turkmenica gen. nov., comb. nov. Int J Syst Bacteriol 49, 131–136.[CrossRef]
    [Google Scholar]
  26. Xin, H., Itoh, T., Zhou, P., Suzuki, K., Kamekura, M. & Nakase, T. ( 2000; ). Natrinema versiforme sp. nov., an extremely halophilic archaeon from Aibi salt lake, Xinjiang, China. Int J Syst Evol Microbiol 50, 1297–1303.[CrossRef]
    [Google Scholar]
  27. Xu, X. W., Ren, P. G., Liu, S. J., Wu, M. & Zhou, P. J. ( 2005a; ). Natrinema altunense sp. nov., an extremely halophilic archaeon isolated from a salt lake in Altun Mountain in Xinjiang, China. Int J Syst Evol Microbiol 55, 1311–1314.[CrossRef]
    [Google Scholar]
  28. Xu, X. W., Liu, S. J., Tohty, D., Oren, A., Wu, M. & Zhou, P. J. ( 2005b; ). Haloterrigena saccharevitans sp. nov., an extremely halophilic archaeon from Xin-Jiang, China. Int J Syst Evol Microbiol 55, 2539–2542.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.013995-0
Loading
/content/journal/ijsem/10.1099/ijs.0.013995-0
Loading

Data & Media loading...

Supplements

Chemical analysis of the soil sample from which strain JX313 was isolated. [PDF](39 KB)

PDF

Phase-contrast photomicrograph of cells of strain JX313 . Bar, 5 µm.

IMAGE

Minimum-evolution and maximum-parsimony phylogenetic trees, based on 16S rRNA gene sequences, showing the relationship between strain JX313 and related taxa. [PDF](46 KB)

PDF

Thin-layer chromatogram of polar lipids extracted from CGMCC 1.3709 (lane 1) and strain JX313 (lane 2). Circled spots are glycolipids. PG, Phosphatidylglycerol; PGP-Me, phosphatidylglycerol phosphate methyl ester; S -DGD, mannose-2,6-disulfate (1→2)-glucose glycerol diether.

IMAGE

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error