1887

Abstract

A methylotrophic nitrogen-fixing bacterial strain, Ah-143, isolated from the rhizosphere soil of field-grown groundnut was analysed by a polyphasic taxonomic approach. Comparative 16S rRNA gene sequence analysis combined with gene sequence analysis allocated strain Ah-143 to the family , with and as the closest relatives. The strain is Gram-stain-negative, non-spore-forming, aerobic and motile, having straight rod-shaped cells with a DNA GC content of approximately 53.2 mol%. The strain utilizes methanol as a carbon source and the gene was closely related to the gene of members of the genus . The fatty acid profile consisted of C, C cyclo, C 7, summed feature 2 (iso-C I and/or C 3-OH) and summed feature 3 (iso-C 2-OH and/or C 7) as the major components. DNA–DNA relatedness of strain Ah-143 with its close relatives was less than 20 %. On the basis of the phylogenetic analyses, DNA–DNA hybridization data, and unique physiological and biochemical characteristics, it is proposed that the strain represents a novel species of the genus and should be named sp. nov. The type strain is Ah-143 (=NCIMB 14469 =KCTC 22375).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.013664-0
2010-07-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/7/1559.html?itemId=/content/journal/ijsem/10.1099/ijs.0.013664-0&mimeType=html&fmt=ahah

References

  1. Auman, A. J., Stolyar, S., Costello, A. M. & Lidstrom, M. E. ( 2000; ). Molecular characterization of methanotrophic isolates from freshwater lake sediment. Appl Environ Microbiol 66, 5259–5266.[CrossRef]
    [Google Scholar]
  2. Blaha, D., Prigent-Combaret, C., Mirza, M. S. & Moënne-Loccoz, Y. ( 2006; ). Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase-encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiol Ecol 56, 455–470.[CrossRef]
    [Google Scholar]
  3. Bozzola, J. J. & Russell, L. D. ( 1998; ). Electron Microscopy: Principles and Techniques for Biologists, 2nd edn. Sudbury, MA: Jones & Bartlett.
  4. Brenner, D. J., McWhorter, A. C., Kai, A., Steigerwalt, A. G. & Farmer, J. J., III ( 1986; ). Enterobacter asburiae sp. nov., a new species found in clinical specimens, and reassignment of Erwinia dissolvens and Erwinia nimipressuralis to the genus Enterobacter as Enterobacter dissolvens comb. nov. and Enterobacter nimipressuralis comb. nov. J Clin Microbiol 23, 1114–1120.
    [Google Scholar]
  5. Chanprame, S., Todd, J. J. & Widholm, J. M. ( 1996; ). Prevention of pink-pigmented methylotrophic bacteria (Methylobacterium mesophilicum) contamination of plant tissue cultures. Plant Cell Rep 16, 222–225.[CrossRef]
    [Google Scholar]
  6. Dedysh, S. N., Knief, C. & Dunfield, P. F. ( 2005; ). Methylocella species are facultatively methanotrophic. J Bacteriol 187, 4665–4670.[CrossRef]
    [Google Scholar]
  7. Drancourt, M., Bollet, C., Carta, A. & Rousselier, P. ( 2001; ). Phylogenetic analyses of Klebsiella species delineate Klebsiella and Raoultella gen. nov., with description of Raoultella ornithinolytica comb. nov., Raoultella terrigena comb. nov. and Raoultella planticola comb. nov. Int J Syst Evol Microbiol 51, 925–932.[CrossRef]
    [Google Scholar]
  8. Dunfield, P. F., Khmelenina, V. N., Suzina, N. E., Trotsenko, Y. A. & Dedysh, S. N. ( 2003; ). Methylocella silvestris sp. nov., a novel methanotroph isolated from an acidic forest cambisol. Int J Syst Evol Microbiol 53, 1231–1239.[CrossRef]
    [Google Scholar]
  9. Edwards, P. R. & Ewing, W. H. ( 1972; ). Identification of Enterobacteriaceae, 3rd edn. Minneapolis: Burgess Publishing Co.
  10. Egamberdieva, D., Kamilova, F., Validov, S., Gafurova, L., Kucharova, Z. & Lugtenberg, B. ( 2008; ). High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ Microbiol 10, 1–9.
    [Google Scholar]
  11. Gerhardt, P., Murray, R. G. E., Wood, W. A. & Krieg, N. R. (editors) ( 1994; ). Methods for General and Molecular Bacteriology. Washington, DC: American Society for Microbiology.
  12. Glick, B. R., Patten, C. L., Holguin, G. & Penrose, D. M. ( 1999; ). Biochemical and Genetic Mechanisms used by Plant Growth Promoting Bacteria. London: Imperial College Press.
  13. Götz, M., Gomes, N. C. M., Dratwinski, A., Costa, R., Berg, G., Peixoto, R., Mendonça-Hagler, L. & Smalla, K. ( 2006; ). Survival of gfp-tagged antagonistic bacteria in the rhizosphere of tomato plants and their effects on the indigenous bacterial community. FEMS Microbiol Ecol 56, 207–218.[CrossRef]
    [Google Scholar]
  14. Green, P. N. & Bousfield, I. J. ( 1982; ). A taxonomic study of some Gram-negative facultatively methylotrophic bacteria. J Gen Microbiol 128, 623–638.
    [Google Scholar]
  15. Hoffmann, H., Stindl, S., Ludwig, W., Stumpf, A., Mehlen, A., Heesemann, J., Monget, D., Schleifer, K. H. & Roggenkamp, A. ( 2005; ). Reassignment of Enterobacter dissolvens to Enterobacter cloacae as E. cloacae subspecies dissolvens comb. nov. and emended description of Enterobacter asburiae and Enterobacter kobei. Syst Appl Microbiol 28, 196–205.[CrossRef]
    [Google Scholar]
  16. Hormaeche, E. & Edwards, P. R. ( 1960; ). A proposed genus Enterobacter. Int Bull Bacteriol Nomencl Taxon 10, 71–74.
    [Google Scholar]
  17. Inoue, K., Sugiyama, K., Kosako, Y., Sakazaki, R. & Yamai, S. ( 2000; ). Enterobacter cowanii sp. nov., a new species of the family Enterobacteriaceae. Curr Microbiol 41, 417–420.[CrossRef]
    [Google Scholar]
  18. Izard, D., Gavini, F., Trinel, P. A. & Leclerc, H. ( 1981; ). Deoxyribonucleic acid relatedness between Enterobacter cloacae and Enterobacter amnigenus sp. nov. Int J Syst Bacteriol 31, 35–42.[CrossRef]
    [Google Scholar]
  19. Kämpfer, P., Ruppel, S. & Remus, R. ( 2005; ). Enterobacter radicincitans sp. nov., a plant growth promoting species of the family Enterobacteriaceae. Syst Appl Microbiol 28, 213–221.[CrossRef]
    [Google Scholar]
  20. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  21. Li, X., Zhang, D., Chen, F., Ma, J., Dong, Y. & Zhang, L. ( 2004; ). Klebsiella singaporensis sp. nov., a novel isomaltulose-producing bacterium. Int J Syst Evol Microbiol 54, 2131–2136.[CrossRef]
    [Google Scholar]
  22. Madhaiyan, M., Poonguzhali, S., Ryu, J. & Sa, T. ( 2006; ). Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminase-containing Methylobacterium fujisawaense. Planta 224, 268–278.[CrossRef]
    [Google Scholar]
  23. Madhaiyan, M., Kim, B.-Y., Poonguzhali, S., Kwon, S.-W., Song, M.-H., Ryu, J.-H., Go, S.-J., Koo, B.-S. & Sa, T.-M. ( 2007a; ). Methylobacterium oryzae sp. nov., an aerobic, pink-pigmented, facultatively methylotrophic, 1-aminocyclopropane-1-carboxylate deaminase-producing bacterium isolated from rice. Int J Syst Evol Microbiol 57, 326–331.[CrossRef]
    [Google Scholar]
  24. Madhaiyan, M., Poonguzhali, S. & Sa, T. ( 2007b; ). Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere 69, 220–228.[CrossRef]
    [Google Scholar]
  25. Madhaiyan, M., Poonguzhali, S., Kwon, S.-W. & Sa, T.-M. ( 2009; ). Methylobacterium phyllosphaerae sp. nov., a pink-pigmented facultative methylotroph from the phyllosphere of rice. Int J Syst Evol Microbiol 59, 22–27.[CrossRef]
    [Google Scholar]
  26. McDonald, I. R. & Murrell, J. C. ( 1997; ). The methanol dehydrogenase structural gene mxaF and its use as a functional gene probe for methanotrophs and methylotrophs. Appl Environ Microbiol 63, 3218–3224.
    [Google Scholar]
  27. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  28. Mollet, C., Drancourt, M. & Raoult, D. ( 1997; ). rpoB sequence analysis as a novel basis for bacterial identification. Mol Microbiol 26, 1005–1011.[CrossRef]
    [Google Scholar]
  29. Niemann, S., Pühler, A., Tichy, H. V., Simon, R. & Selbitschka, W. ( 1997; ). Evaluation of the resolving power of three different DNA fingerprinting methods to discriminate among isolates of a natural Rhizobium meliloti population. J Appl Microbiol 82, 477–484.[CrossRef]
    [Google Scholar]
  30. Poonguzhali, S., Madhaiyan, M. & Sa, T. ( 2006; ). Cultivation-dependent characterization of rhizobacterial communities from field grown Chinese cabbage Brassica campestris ssp pekinensis and screening of traits for potential plant growth promotion. Plant Soil 286, 167–180.[CrossRef]
    [Google Scholar]
  31. Richard, C. ( 1984; ). Genus VI. Enterobacter Hormaeche and Edwards 1960. In Bergey's Manual of Systematic Bacteriology, vol. 1, pp. 465–469. Edited by N. R. Krieg & J. G. Holt. Baltimore: Williams & Wilkins.
  32. Roberts, D. P., Baker, C. J., McKenna, L., Liu, S., Buyer, J. S. & Kobayashi, D. Y. ( 2009; ). Influence of host seed on metabolic activity of Enterobacter cloacae in the spermosphere. Soil Biol Biochem 41, 754–761.[CrossRef]
    [Google Scholar]
  33. Ruppel, S. & Merbach, W. ( 1997; ). Effect of ammonium and nitrate on 15N2-fixation of Azospirillum spp. and Pantoea agglomerans in association with wheat plants. Microbiol Res 152, 377–383.[CrossRef]
    [Google Scholar]
  34. Ruppel, S., Hecht-Buchholz, C., Remus, R., Ortmann, U. & Schmelzer, R. ( 1992; ). Settlement of diazotrophic, phytoeffective bacterial strain Pantoea agglomerans on and within winter wheat: an investigation using ELISA and transmission electron microscopy. Plant Soil 145, 261–273.[CrossRef]
    [Google Scholar]
  35. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  36. Sasser, M. ( 1990; ). Identification of bacteria through fatty acid analysis. In Methods in Phytobacteriology, pp. 199–204. Edited by Z. Klement, K. Rudolph & D. C. Sands. Budapest: Akademiai Kiado.
  37. Seldin, L. & Dubnau, D. ( 1985; ). Deoxyribonucleic acid homology among Bacillus polymyxa, Bacillus macerans, Bacillus azotofixans, and other nitrogen-fixing Bacillus strains. Int J Syst Bacteriol 35, 151–154.[CrossRef]
    [Google Scholar]
  38. Stephan, R., Van Trappen, S., Cleenwerck, I., Vancanneyt, M., De Vos, P. & Lehner, A. ( 2007; ). Enterobacter turicensis sp. nov. and Enterobacter helveticus sp. nov., isolated from fruit powder. Int J Syst Evol Microbiol 57, 820–826.[CrossRef]
    [Google Scholar]
  39. Stephan, R., Van Trappen, S., Cleenwerck, I., Iversen, C., Joosten, H., De Vos, P. & Lehner, A. ( 2008; ). Enterobacter pulveris sp. nov., isolated from fruit powder, infant formula and an infant formula production environment. Int J Syst Evol Microbiol 58, 237–241.[CrossRef]
    [Google Scholar]
  40. Tan, Z. Y., Wang, E. T., Peng, G. X., Zhu, M. E., Martínez-Romero, E. & Chen, W. X. ( 1999; ). Characterization of bacteria isolated from wild legumes in the north-western regions of China. Int J Syst Bacteriol 49, 1457–1469.[CrossRef]
    [Google Scholar]
  41. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  42. Ueda, T., Suga, Y., Yahiro, N. & Matsuguchi, T. ( 1995; ). Phylogeny of Sym plasmids of rhizobia by PCR-based sequencing of a nodC segment. J Bacteriol 177, 468–472.
    [Google Scholar]
  43. Vassileva, M., Azcon, R., Barea, J.-M. & Vassilev, N. ( 1999; ). Effect of encapsulated cells of Enterobacter sp on plant growth and phosphate uptake. Bioresour Technol 67, 229–232.[CrossRef]
    [Google Scholar]
  44. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  45. Whipps, J. M. ( 2001; ). Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52, 487–511.[CrossRef]
    [Google Scholar]
  46. Whittenbury, R., Phillips, K. C. & Wilkinson, J. F. ( 1970; ). Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61, 205–218.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.013664-0
Loading
/content/journal/ijsem/10.1099/ijs.0.013664-0
Loading

Data & Media loading...

Supplements

vol. , part 7, pp. 1559 - 1564

[ PDF] (183 KB) containing:

Phase-contrast (a) and scanning electron (b and c) micrographs of cells of strain Ah-143 on tryptic soy agar (TSA) medium.

Neighbour-joining tree comprising gene sequences of strain Ah-143 and related members of the family .

Phylogenetic tree for strain Ah-143 and strains of closely related genera based on the deduced amino acid sequences of products by the neighbour-joining method.

Cellular fatty acid compositions of strain Ah-143 and related species of the genus .



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error