1887

Abstract

A methylotrophic nitrogen-fixing bacterial strain, Ah-143, isolated from the rhizosphere soil of field-grown groundnut was analysed by a polyphasic taxonomic approach. Comparative 16S rRNA gene sequence analysis combined with gene sequence analysis allocated strain Ah-143 to the family , with and as the closest relatives. The strain is Gram-stain-negative, non-spore-forming, aerobic and motile, having straight rod-shaped cells with a DNA GC content of approximately 53.2 mol%. The strain utilizes methanol as a carbon source and the gene was closely related to the gene of members of the genus . The fatty acid profile consisted of C, C cyclo, C 7, summed feature 2 (iso-C I and/or C 3-OH) and summed feature 3 (iso-C 2-OH and/or C 7) as the major components. DNA–DNA relatedness of strain Ah-143 with its close relatives was less than 20 %. On the basis of the phylogenetic analyses, DNA–DNA hybridization data, and unique physiological and biochemical characteristics, it is proposed that the strain represents a novel species of the genus and should be named sp. nov. The type strain is Ah-143 (=NCIMB 14469 =KCTC 22375).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.013664-0
2010-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/7/1559.html?itemId=/content/journal/ijsem/10.1099/ijs.0.013664-0&mimeType=html&fmt=ahah

References

  1. Auman A. J., Stolyar S., Costello A. M., Lidstrom M. E. 2000; Molecular characterization of methanotrophic isolates from freshwater lake sediment. Appl Environ Microbiol 66:5259–5266 [CrossRef]
    [Google Scholar]
  2. Blaha D., Prigent-Combaret C., Mirza M. S., Moënne-Loccoz Y. 2006; Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase-encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiol Ecol 56:455–470 [CrossRef]
    [Google Scholar]
  3. Bozzola J. J., Russell L. D. 1998 Electron Microscop y : Principles and Techniques for Biologists , 2nd edn. Sudbury, MA: Jones & Bartlett;
    [Google Scholar]
  4. Brenner D. J., McWhorter A. C., Kai A., Steigerwalt A. G., Farmer J. J. III 1986; Enterobacter asburiae sp. nov., a new species found in clinical specimens, and reassignment of Erwinia dissolvens and Erwinia nimipressuralis to the genus Enterobacter as Enterobacter dissolvens comb.nov. and Enterobacter nimipressuralis comb. nov. J Clin Microbiol 23:1114–1120
    [Google Scholar]
  5. Chanprame S., Todd J. J., Widholm J. M. 1996; Prevention of pink-pigmented methylotrophic bacteria ( Methylobacterium mesophilicum ) contamination of plant tissue cultures. Plant Cell Rep 16:222–225 [CrossRef]
    [Google Scholar]
  6. Dedysh S. N., Knief C., Dunfield P. F. 2005; Methylocella species are facultatively methanotrophic. J Bacteriol 187:4665–4670 [CrossRef]
    [Google Scholar]
  7. Drancourt M., Bollet C., Carta A., Rousselier P. 2001; Phylogenetic analyses of Klebsiella species delineate Klebsiella and Raoultella gen. nov., with description of Raoultella ornithinolytica comb. nov., Raoultella terrigena comb. nov. and Raoultella planticola comb. nov. Int J Syst Evol Microbiol 51:925–932 [CrossRef]
    [Google Scholar]
  8. Dunfield P. F., Khmelenina V. N., Suzina N. E., Trotsenko Y. A., Dedysh S. N. 2003; Methylocella silvestris sp. nov., a novel methanotroph isolated from an acidic forest cambisol. Int J Syst Evol Microbiol 53:1231–1239 [CrossRef]
    [Google Scholar]
  9. Edwards P. R., Ewing W. H. 1972 Identification of Enterobacteriaceae , 3rd edn. Minneapolis: Burgess Publishing Co;
    [Google Scholar]
  10. Egamberdieva D., Kamilova F., Validov S., Gafurova L., Kucharova Z., Lugtenberg B. 2008; High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ Microbiol 10:1–9
    [Google Scholar]
  11. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. (editors) 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  12. Glick B. R., Patten C. L., Holguin G., Penrose D. M. 1999 Biochemical and Genetic Mechanisms used by Plant Growth Promoting Bacteria London: Imperial College Press;
    [Google Scholar]
  13. Götz M., Gomes N. C. M., Dratwinski A., Costa R., Berg G., Peixoto R., Mendonça-Hagler L., Smalla K. 2006; Survival of gfp -tagged antagonistic bacteria in the rhizosphere of tomato plants and their effects on the indigenous bacterial community. FEMS Microbiol Ecol 56:207–218 [CrossRef]
    [Google Scholar]
  14. Green P. N., Bousfield I. J. 1982; A taxonomic study of some Gram-negative facultatively methylotrophic bacteria. J Gen Microbiol 128:623–638
    [Google Scholar]
  15. Hoffmann H., Stindl S., Ludwig W., Stumpf A., Mehlen A., Heesemann J., Monget D., Schleifer K. H., Roggenkamp A. 2005; Reassignment of Enterobacter dissolvens to Enterobacter cloacae as E. cloacae subspecies dissolvens comb. nov. and emended description of Enterobacter asburiae and Enterobacter kobei . Syst Appl Microbiol 28:196–205 [CrossRef]
    [Google Scholar]
  16. Hormaeche E., Edwards P. R. 1960; A proposed genus Enterobacter . Int Bull Bacteriol Nomencl Taxon 10:71–74
    [Google Scholar]
  17. Inoue K., Sugiyama K., Kosako Y., Sakazaki R., Yamai S. 2000; Enterobacter cowanii sp. nov., a new species of the family Enterobacteriaceae . Curr Microbiol 41:417–420 [CrossRef]
    [Google Scholar]
  18. Izard D., Gavini F., Trinel P. A., Leclerc H. 1981; Deoxyribonucleic acid relatedness between Enterobacter cloacae and Enterobacter amnigenus sp. nov. Int J Syst Bacteriol 31:35–42 [CrossRef]
    [Google Scholar]
  19. Kämpfer P., Ruppel S., Remus R. 2005; Enterobacter radicincitans sp. nov., a plant growth promoting species of the family Enterobacteriaceae . Syst Appl Microbiol 28:213–221 [CrossRef]
    [Google Scholar]
  20. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  21. Li X., Zhang D., Chen F., Ma J., Dong Y., Zhang L. 2004; Klebsiella singaporensis sp. nov., a novel isomaltulose-producing bacterium. Int J Syst Evol Microbiol 54:2131–2136 [CrossRef]
    [Google Scholar]
  22. Madhaiyan M., Poonguzhali S., Ryu J., Sa T. 2006; Regulation of ethylene levels in canola ( Brassica campestris ) by 1-aminocyclopropane-1-carboxylate deaminase-containing Methylobacterium fujisawaense . Planta 224:268–278 [CrossRef]
    [Google Scholar]
  23. Madhaiyan M., Kim B.-Y., Poonguzhali S., Kwon S.-W., Song M.-H., Ryu J.-H., Go S.-J., Koo B.-S., Sa T.-M. 2007a; Methylobacterium oryzae sp. nov., an aerobic, pink-pigmented, facultatively methylotrophic, 1-aminocyclopropane-1-carboxylate deaminase-producing bacterium isolated from rice. Int J Syst Evol Microbiol 57:326–331 [CrossRef]
    [Google Scholar]
  24. Madhaiyan M., Poonguzhali S., Sa T. 2007b; Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato ( Lycopersicon esculentum L.). Chemosphere 69:220–228 [CrossRef]
    [Google Scholar]
  25. Madhaiyan M., Poonguzhali S., Kwon S.-W., Sa T.-M. 2009; Methylobacterium phyllosphaerae sp. nov., a pink-pigmented facultative methylotroph from the phyllosphere of rice. Int J Syst Evol Microbiol 59:22–27 [CrossRef]
    [Google Scholar]
  26. McDonald I. R., Murrell J. C. 1997; The methanol dehydrogenase structural gene mxaF and its use as a functional gene probe for methanotrophs and methylotrophs. Appl Environ Microbiol 63:3218–3224
    [Google Scholar]
  27. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  28. Mollet C., Drancourt M., Raoult D. 1997; rpoB sequence analysis as a novel basis for bacterial identification. Mol Microbiol 26:1005–1011 [CrossRef]
    [Google Scholar]
  29. Niemann S., Pühler A., Tichy H. V., Simon R., Selbitschka W. 1997; Evaluation of the resolving power of three different DNA fingerprinting methods to discriminate among isolates of a natural Rhizobium meliloti population. J Appl Microbiol 82:477–484 [CrossRef]
    [Google Scholar]
  30. Poonguzhali S., Madhaiyan M., Sa T. 2006; Cultivation-dependent characterization of rhizobacterial communities from field grown Chinese cabbage Brassica campestris ssp pekinensis and screening of traits for potential plant growth promotion. Plant Soil 286:167–180 [CrossRef]
    [Google Scholar]
  31. Richard C. 1984; Genus VI. Enterobacter Hormaeche and Edwards 1960. In Bergey's Manual of Systematic Bacteriology vol. 1 pp 465–469 Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  32. Roberts D. P., Baker C. J., McKenna L., Liu S., Buyer J. S., Kobayashi D. Y. 2009; Influence of host seed on metabolic activity of Enterobacter cloacae in the spermosphere. Soil Biol Biochem 41:754–761 [CrossRef]
    [Google Scholar]
  33. Ruppel S., Merbach W. 1997; Effect of ammonium and nitrate on 15N2-fixation of Azospirillum spp. and Pantoea agglomerans in association with wheat plants. Microbiol Res 152:377–383 [CrossRef]
    [Google Scholar]
  34. Ruppel S., Hecht-Buchholz C., Remus R., Ortmann U., Schmelzer R. 1992; Settlement of diazotrophic, phytoeffective bacterial strain Pantoea agglomerans on and within winter wheat: an investigation using ELISA and transmission electron microscopy. Plant Soil 145:261–273 [CrossRef]
    [Google Scholar]
  35. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  36. Sasser M. 1990; Identification of bacteria through fatty acid analysis. In Methods in Phytobacteriology pp 199–204 Edited by Klement Z., Rudolph K., Sands D. C. Budapest: Akademiai Kiado;
    [Google Scholar]
  37. Seldin L., Dubnau D. 1985; Deoxyribonucleic acid homology among Bacillus polymyxa , Bacillus macerans , Bacillus azotofixans , and other nitrogen-fixing Bacillus strains. Int J Syst Bacteriol 35:151–154 [CrossRef]
    [Google Scholar]
  38. Stephan R., Van Trappen S., Cleenwerck I., Vancanneyt M., De Vos P., Lehner A. 2007; Enterobacter turicensis sp. nov. and Enterobacter helveticus sp. nov., isolated from fruit powder. Int J Syst Evol Microbiol 57:820–826 [CrossRef]
    [Google Scholar]
  39. Stephan R., Van Trappen S., Cleenwerck I., Iversen C., Joosten H., De Vos P., Lehner A. 2008; Enterobacter pulveris sp. nov., isolated from fruit powder, infant formula and an infant formula production environment. Int J Syst Evol Microbiol 58:237–241 [CrossRef]
    [Google Scholar]
  40. Tan Z. Y., Wang E. T., Peng G. X., Zhu M. E., Martínez-Romero E., Chen W. X. 1999; Characterization of bacteria isolated from wild legumes in the north-western regions of China. Int J Syst Bacteriol 49:1457–1469 [CrossRef]
    [Google Scholar]
  41. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  42. Ueda T., Suga Y., Yahiro N., Matsuguchi T. 1995; Phylogeny of Sym plasmids of rhizobia by PCR-based sequencing of a nodC segment. J Bacteriol 177:468–472
    [Google Scholar]
  43. Vassileva M., Azcon R., Barea J.-M., Vassilev N. 1999; Effect of encapsulated cells of Enterobacter sp on plant growth and phosphate uptake. Bioresour Technol 67:229–232 [CrossRef]
    [Google Scholar]
  44. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  45. Whipps J. M. 2001; Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511 [CrossRef]
    [Google Scholar]
  46. Whittenbury R., Phillips K. C., Wilkinson J. F. 1970; Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61:205–218 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.013664-0
Loading
/content/journal/ijsem/10.1099/ijs.0.013664-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error