1887

Abstract

genospecies (genomic species) 10 and 11 were described by Bouvet and Grimont in 1986 on the basis of DNA–DNA reassociation studies and comprehensive phenotypic analysis. In the present study, the names sp. nov. and sp. nov., respectively, are proposed for these genomic species based on the congruence of results of polyphasic analysis of 33 strains (16 and 17 strains of genomic species 10 and 11, respectively). All strains were investigated by selective restriction fragment amplification (i.e. AFLP) analysis sequence analysis, amplified rDNA restriction analysis and tDNA intergenic length polymorphism analysis, and their nutritional and physiological properties were determined. Subsets of the strains were studied by 16S rRNA gene sequence analysis and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS or had been classified previously by DNA–DNA reassociation. Results indicate that and represent two phenetically and phylogenetically distinct groups within the genus . Based on the comparative analysis of housekeeping genes (16S rRNA and genes), these species together represent a monophyletic branch within the genus. Despite their overall phenotypic similarity, the ability to oxidize -glucose and to grow at 38 °C can be used in the presumptive differentiation of these two species from each other: with the exception of three strains that were positive for only one test, strains were positive for both tests, whereas strains were negative in these tests. The strains of originated mainly from human clinical specimens, whereas strains were isolated from different environmental sources in addition to human specimens. The type strain of sp. nov. is LMG 1003 (=CIP 70.12 =ATCC 17924) and that of sp. nov. is LMG 988 (=CIP 63.46 =ATCC 11171 =CCUG 2491).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.013656-0
2010-04-01
2020-09-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/4/896.html?itemId=/content/journal/ijsem/10.1099/ijs.0.013656-0&mimeType=html&fmt=ahah

References

  1. Baele M., Baele P., Vaneechoutte M., Storms V., Butaye P., Devriese L. A., Verschraegen G., Gillis M., Haesebrouck F. 2000; Application of tRNA intergenic spacer PCR for identification of Enterococcus species. J Clin Microbiol 38:4201–4207
    [Google Scholar]
  2. Baele M., Storms V., Haesebrouck F., Devriese L. A., Gillis M., Verschraegen G., de Baere T., Vaneechoutte M. 2001; Application and evaluation of the interlaboratory reproducibility of tRNA intergenic length polymorphism analysis (tDNA-PCR) for identification of Streptococcus species. J Clin Microbiol 39:1436–1442 [CrossRef]
    [Google Scholar]
  3. Baumann P., Doudoroff M., Stanier R. Y. 1968; A study of the Moraxella group. II. Oxidative-negative species (genus Acinetobacter . J Bacteriol 95:1520–1541
    [Google Scholar]
  4. Berlau J., Aucken H. M., Houang E., Pitt T. L. 1999; Isolation of Acinetobacter spp. including A. baumannii from vegetables: implications for hospital-acquired infections. J Hosp Infect 42:201–204 [CrossRef]
    [Google Scholar]
  5. Bouvet P. J. M., Grimont P. A. D. 1986; Taxonomy of the genus Acinetobacter with the recognition of Acinetobacter baumannii sp.nov., Acinetobacter haemolyticus sp. nov., Acinetobacter johnsonii sp. nov., and Acinetobacter junii sp. nov. and emended descriptions of Acinetobacter calcoaceticus and Acinetobacter lwoffii . Int J Syst Bacteriol 36:228–240 [CrossRef]
    [Google Scholar]
  6. Carr E. L., Kämpfer P., Patel B. K. C., Gürtler V., Seviour R. J. 2003; Seven novel species of Acinetobacter isolated from activated sludge. Int J Syst Evol Microbiol 53:953–963
    [Google Scholar]
  7. Chu Y. W., Leung C. M., Houang E. T., Ng K. C., Leung C. B., Leung H. Y., Cheng A. F. 1999; Skin carriage of acinetobacters in Hong Kong. J Clin Microbiol 37:2962–2967
    [Google Scholar]
  8. Dijkshoorn L., Nemec A. 2007; The diversity of the genus Acinetobacter . In Acinetobacter Molecular Biology pp 1–34 Edited by Gerischer U. Wymondham, UK: Horizon Scientific Press/Caister Academic Press;
    [Google Scholar]
  9. Dijkshoorn L., van Harsselaar B., Tjernberg I., Bouvet P. J. M., Vaneechoutte M. 1998; Evaluation of amplified ribosomal DNA restriction analysis for identification of Acinetobacter genomic species. Syst Appl Microbiol 21:33–39 [CrossRef]
    [Google Scholar]
  10. Dijkshoorn L., van Aken E., Shunburne L., van der Reijden T. J., Bernards A. T., Nemec A., Towner K. J. 2005; Prevalence of Acinetobacter baumannii and other Acinetobacter spp. in faecal samples from non-hospitalised individuals. Clin Microbiol Infect 11:329–332 [CrossRef]
    [Google Scholar]
  11. Dijkshoorn L., Nemec A., Seifert H. 2007; An increasing threat in the hospital: multidrug resistant Acinetobacter baumannii . Nat Rev Microbiol 5:939–951 [CrossRef]
    [Google Scholar]
  12. Gerner-Smidt P., Tjernberg I., Ursing J. 1991; Reliability of phenotypic tests for identification of Acinetobacter species. J Clin Microbiol 29:277–282
    [Google Scholar]
  13. Guardabassi L., Dijkshoorn L., Collard J. M., Olsen J. E., Dalsgaard A. 2000; Distribution and in-vitro transfer of tetracycline resistance determinants in clinical and aquatic Acinetobacter strains. J Med Microbiol 49:929–936
    [Google Scholar]
  14. Janssen P., Maquelin K., Coopman R., Tjernberg I., Bouvet P., Kersters K., Dijkshoorn L. 1997; Discrimination of Acinetobacter genomic species by AFLP fingerprinting. Int J Syst Bacteriol 47:1179–1187 [CrossRef]
    [Google Scholar]
  15. Juni E. 1972; Interspecies transformation of Acinetobacter : genetic evidence for a ubiquitous genus. J Bacteriol 112:917–931
    [Google Scholar]
  16. Nemec A., Dijkshoorn L., Ježek P. 2000; Recognition of two novel phenons of the genus Acinetobacter among non-glucose-acidifying isolates from human specimens. J Clin Microbiol 38:3937–3941
    [Google Scholar]
  17. Nemec A., De Baere T., Tjernberg I., Vaneechoutte M., van der Reijden T. J. K., Dijkshoorn L. 2001; Acinetobacter ursingii sp. nov. and Acinetobacter schindleri sp. nov., isolated from human clinical specimens. Int J Syst Evol Microbiol 51:1891–1899
    [Google Scholar]
  18. Nemec A., Dijkshoorn L., Cleenwerck I., De Baere T., Janssens D., van der Reijden T. J. K., Ježek P., Vaneechoutte M. 2003; Acinetobacter parvus sp. nov., a small-colony-forming species isolated from human clinical specimens. Int J Syst Evol Microbiol 53:1563–1567
    [Google Scholar]
  19. Nemec A., Musílek M., Maixnerová M., De Baere T., van der Reijden T. J. K., Vaneechoutte M., Dijkshoorn L. 2009; Acinetobacter beijerinckii sp. nov. and Acinetobacter gyllenbergii sp. nov., haemolytic organisms isolated from humans. Int J Syst Evol Microbiol 59:118–124 [CrossRef]
    [Google Scholar]
  20. Tjernberg I., Ursing J. 1989; Clinical strains of Acinetobacter classified by DNA-DNA hybridization. APMIS 97:595–605 [CrossRef]
    [Google Scholar]
  21. Vaneechoutte M., De Baere T. 2007; Taxonomy of the genus Acinetobacter , based on 16S ribosomal RNA gene sequences. In Acinetobacter Molecular Biology pp 35–60 Edited by Gerischer U. Wymondham, UK: Horizon Scientific Press/Caister Academic Press;
    [Google Scholar]
  22. Vaneechoutte M., Boerlin P., Tichy H.-V., Bannerman E., Jäger B., Bille J. 1998; Comparison of PCR-based DNA fingerprinting techniques for the identification of Listeria species and their use for atypical Listeria isolates. Int J Syst Bacteriol 48:127–139 [CrossRef]
    [Google Scholar]
  23. Vaneechoutte M., Young D. M., Ornston L. N., De Baere T., Nemec A., van der Reijden T., Carr E., Tjernberg I., Dijkshoorn L. 2006; Naturally transformable Acinetobacter sp. strain ADP1 belongs to the newly described species Acinetobacter baylyi . Appl Environ Microbiol 72:932–936 [CrossRef]
    [Google Scholar]
  24. Vaneechoutte M., Nemec A., Musílek M., van der Reijden T. J. K., van den Barselaar M., Tjernberg I., Calame W., Fani R., De Baere T., Dijkshoorn L. 2009; Description of Acinetobacter venetianus ex Di Cello et al. 1997 sp. nov. Int J Syst Evol Microbiol 59:1376–1381 [CrossRef]
    [Google Scholar]
  25. Williams T. L., Andrzejewski D., Lay J. O., Musser S. M. 2003; Experimental factors affecting the duality and reproducibility of MALDI TOF mass spectra obtained from whole bacteria cells. J Am Soc Mass Spectrom 14:342–351 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.013656-0
Loading
/content/journal/ijsem/10.1099/ijs.0.013656-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error