1887

Abstract

A Gram-negative motile rod, strain SAM4, was isolated from the highest positive dilution of a most probable number series inoculated with tidal-flat sediments from the German North Sea coast. The isolate grew at 4–35 °C and showed constant growth yields throughout almost the whole temperature range. Growth was observed between pH 6 and 9 and at salinities of 0.3–10.2 %. Strain SAM4 required Na for growth, contained bacteriochlorophyll and was catalase- and oxidase-positive. It was nutritionally versatile growing on a variety of carbon compounds including carbohydrates, amino acids and organic acids like lactate or succinate. It grew anaerobically on complex media such as marine broth, indicating fermentation, and by reducing trimethylammonium oxide. The dominant phospholipids were phosphatidylethanolamine and phosphatidylglycerol, whereas only traces of phosphatidylcholine and an unidentified lipid were found. The major fatty acid was -C 7. The DNA G+C content was 56.4 mol%. The isolate was identified as a member of the clade within the class . However, based on phylogenetic, phenotypic and physiological data, it clearly differs from its closest relative . Therefore, a novel species is proposed: sp. nov., with strain SAM4 (=DSM 17270=LMG 23018) as the type strain. Emended descriptions of the genus and of are also presented.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.013524-0
2010-08-01
2024-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/8/1770.html?itemId=/content/journal/ijsem/10.1099/ijs.0.013524-0&mimeType=html&fmt=ahah

References

  1. Buchan A., Gonzalez J. M., Moran M. A. 2005; Overview of the marine Roseobacter lineage. Appl Environ Microbiol 71:5665–5677 [CrossRef]
    [Google Scholar]
  2. Cohen-Bazire G., Sistrom W. R., Stanier R. Y. 1957; Kinetic studies of pigment synthesis by nonsulfur purple bacteria. J Cell Comp Physiol 49:25–68 [CrossRef]
    [Google Scholar]
  3. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. (editors) 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  4. Gonzalez J. M., Moran M. A. 1997; Numerical dominance of a group of marine bacteria in the α -subclass of the class Proteobacteria in coastal seawater. Appl Environ Microbiol 63:4237–4242
    [Google Scholar]
  5. Gonzalez J. M., Kiene R. P., Moran M. A. 1999; Transformation of sulfur compounds by an abundant lineage of marine bacteria in the alpha-subclass of the class Proteobacteria . Appl Environ Microbiol 65:3810–3819
    [Google Scholar]
  6. Hugenholtz P., Goebel B. M., Pace N. R. 1998; Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774
    [Google Scholar]
  7. Isaksen M. F., Jørgensen B. B. 1996; Adaptation of psychrophilic and psychrotrophic sulfate-reducing bacteria to permanently cold marine environments. Appl Environ Microbiol 62:408–414
    [Google Scholar]
  8. Ivanova E. P., Gorshkova N. M., Sawabe T., Zhukova N. V., Hayashi K., Kurilenko V. V., Alexeeva Y., Buljan V., Nicolau D. V. other authors 2004 Sulfitobacter delicatus sp. nov. and Sulfitobacter dubius sp. nov., respectively from a starfish ( Stellaster equestris ) and sea grass ( Zostera marina ). Int J Syst Evol Microbiol 54, 475–480 [CrossRef]
  9. Johnson J. E., Hill R. T. 2003; Sediment microbes of deep-sea bioherms on the Northwest Shelf of Australia. Microb Ecol 46:55–61 [CrossRef]
    [Google Scholar]
  10. Köpke B., Wilms R., Engelen B., Cypionka H., Sass H. 2005; Microbial diversity in coastal subsurface sediments: a cultivation approach using various electron acceptors and substrate gradients. Appl Environ Microbiol 71:7819–7830 [CrossRef]
    [Google Scholar]
  11. Kurahashi M., Yokota A. 2007; Tateyamaria omphalii gen. nov., sp. nov., an α -Proteobacterium isolated from a top shell Omphalius pfeifferi pfeifferi . Syst Appl Microbiol 30:371–375 [CrossRef]
    [Google Scholar]
  12. Labrenz M., Collins M. D., Lawson P. A., Tindall B. J., Braker G., Hirsch P. 1998; Antarctobacter heliothermus gen. nov., sp. nov. a budding bacterium from hypersaline and heliothermal Ekho Lake. Int J Syst Bacteriol 48:1363–1372 [CrossRef]
    [Google Scholar]
  13. Labrenz M., Collins M. D., Lawson P. A., Tindall B. J., Schumann P., Hirsch P. 1999; Roseovarius tolerans gen. nov., sp. nov. a budding bacterium with variable bacteriochlorophyll a production from hypersaline Ekho Lake. Int J Syst Bacteriol 49:137–147 [CrossRef]
    [Google Scholar]
  14. Labrenz M., Tindall B. J., Lawson P. A., Collins M. D., Schumann P., Hirsch P. 2000; Staleya guttiformis gen. nov., sp. nov. and Sulfitobacterbrevis sp. nov., α -3-Proteobacteria from hypersaline, heliothermal and meromictic antarctic Ekho Lake. Int J Syst Evol Microbiol 50:303–313 [CrossRef]
    [Google Scholar]
  15. Martens-Habbena W., Sass H. 2006; Sensitive determination of microbial growth by nucleic acid staining in aqueous suspension. Appl Environ Microbiol 72:87–95 [CrossRef]
    [Google Scholar]
  16. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  17. Mullins T. D., Britschgi T. B., Krest R. L., Giovannoni S. J. 1995; Genetic comparisons reveal the same unknown bacterial lineages in Atlantic and Pacific bacterioplankton communities. Limnol Oceanogr 40:148–158 [CrossRef]
    [Google Scholar]
  18. Murray P. R., Baron E. J., Pfaller M. A., Tenover F. C., Yolken R. H. 1995 Manual of Clinical Microbiology , 6th edn. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  19. Pukall R., Buntefuß D., Frühling A., Rohde M., Kroppenstedt R. M., Burghardt J., Lebaron P., Bernard L., Stackebrandt E. 1999; Sulfitobacter mediterraneus sp. nov., a new sulfite-oxidizing member of the α-Proteobacteria . Int J Syst Bacteriol 49:513–519 [CrossRef]
    [Google Scholar]
  20. Rappé M. S., Giovannoni S. J. 2003; The uncultured microbial majority. Annu Rev Microbiol 57:369–394 [CrossRef]
    [Google Scholar]
  21. Reeves D. S., Holt A., Bywater M. J., Wise R., Logan M. N., Andrews J. M., Broughall J. M. 1980; Comparison of sensititre dried microtitration trays with a standard agar method for determination of minimum inhibitory concentrations of antimicrobial agents. Antimicrob Agents Chemother 18:844–852 [CrossRef]
    [Google Scholar]
  22. Rütters H., Sass H., Cypionka H., Rullkötter J. 2001; Monoalkylether phospholipids in the sulfate-reducing bacteria Desulfosarcina variabilis and Desulforhabdus amnigenus . Arch Microbiol 176:435–442 [CrossRef]
    [Google Scholar]
  23. Rütters H., Sass H., Cypionka H., Rullkötter J. 2002; Phospholipid analysis as a tool to study microbial communities. J Microbiol Methods 48:149–160 [CrossRef]
    [Google Scholar]
  24. Sass A., Rütters H., Cypionka H., Sass H. 2002; Desulfobulbus mediterraneus sp. nov., a sulfate-reducing bacterium growing on mono- and disaccharides. Arch Microbiol 177:468–474 [CrossRef]
    [Google Scholar]
  25. Sasser M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids , MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  26. Selje N., Simon M., Brinkhoff T. 2004; A newly discovered Roseobacter cluster in temperate and polar oceans. Nature 427:445–448 [CrossRef]
    [Google Scholar]
  27. Shiba T. 1991; Roseobacter litoralis gen. nov., sp. nov., and Roseobacter denitrificans sp. nov., aerobic pink-pigmented bacteria which contain bacteriochlorophyll a . Syst Appl Microbiol 14:140–145 [CrossRef]
    [Google Scholar]
  28. Sorokin D. Y. 1995 Sulfitobacter pontiacus gen. nov., sp. nov. – a new heterotrophic bacterium from the Black Sea, specialized on sulfite oxidation. Microbiology (English translation of Mikrobiologiia ) 64295–305
  29. Süß J., Engelen B., Cypionka H., Sass H. 2004; Quantitative analysis of bacterial communities from Mediterranean sapropels based on cultivation-dependent methods. FEMS Microbiol Ecol 51:109–121 [CrossRef]
    [Google Scholar]
  30. Süß J., Herrmann K., Seidel M., Cypionka H., Engelen B., Sass H. 2008; Two distinct Photobacterium populations thrive in ancient Mediterranean sapropels. Microb Ecol 55:371–383 [CrossRef]
    [Google Scholar]
  31. Wagner-Döbler I., Rheims H., Felske A., El-Ghezal A., Flade-Schröder D., Laatsch H., Lang S., Pukall R., Tindall B. J. 2004; Oceanibulbus indolifex gen. nov., sp. nov., a North Sea alphaproteobacterium that produces bioactive metabolites. Int J Syst Evol Microbiol 54:1177–1184 [CrossRef]
    [Google Scholar]
  32. Webster G., Blazejak A., Cragg B. A., Schippers A., Sass H., Rinna J., Tang X., Mathes F., Ferdelman T. other authors 2009; Subsurface microbiology and biogeochemistry of a deep, cold-water carbonate mound from the Porcupine Seabight (IODP Expedition 307). Environ Microbiol 11:239–257 [CrossRef]
    [Google Scholar]
  33. Yoon J.-H., Kang S.-J., Lee M.-H., Oh T.-K. 2007; Description of Sulfitobacter donghicola sp. nov., isolated from seawater of the East Sea in Korea, transfer of Staleya guttiformis Labrenz et al. 2000 to the genus Sulfitobacter as Sulfitobacter guttiformis comb. nov. and emended description of the genus Sulfitobacter . Int J Syst Evol Microbiol 57:1788–1792 [CrossRef]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.013524-0
Loading
/content/journal/ijsem/10.1099/ijs.0.013524-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error