1887

Abstract

Four gamma- and UV-radiation-resistant bacterial strains, designated TDMA-24, TDMA-24-2, TDMA-24-3 and TDMA-24-4, were isolated from a fresh-water sample collected at Misasa, Tottori, Japan. Cells of these strains were Gram-reaction-positive, non-motile, non-spore-forming, rod-shaped and formed red colonies. The genomic DNA G+C contents ranged from 70.5 to 70.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the novel isolates belong to the genus , the highest sequence similarities being with PB314 (98 %) and Ho-08 (97 %). The polar lipid profile of strain TDMA-24 comprised three unidentified phosphoglycolipids, five unidentified glycolipids and seven unidentified polar lipids. MK-8 was the predominant respiratory quinone. Major fatty acids were iso-C, Cω6, C, C and summed feature 3 (iso-C 2-OH and/or Cω7). On the basis of their phylogenetic positions and chemotaxonomic and phenotypic characteristics, the novel isolates represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is TDMA-24 ( = JCM 14369  = NBRC 102115  = CCUG 53609).

Funding
This study was supported by the:
  • , 21st century COE program of the Ministry of Education, Culture, Sports, Science and Technology, Japan
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.013482-0
2011-06-01
2020-08-05
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/6/1448.html?itemId=/content/journal/ijsem/10.1099/ijs.0.013482-0&mimeType=html&fmt=ahah

References

  1. Asker D., Beppu T., Ueda K. 2007a; Sphingomonas astaxanthinifaciens sp. nov., a novel astaxanthin-producing bacterium of the family Sphingomonadaceae isolated from Misasa, Tottori, Japan. FEMS Microbiol Lett 273:140–148 [CrossRef][PubMed]
    [Google Scholar]
  2. Asker D., Beppu T., Ueda K. 2007b; Unique diversity of carotenoid-producing bacteria isolated from Misasa, a radioactive site in Japan. Appl Microbiol Biotechnol 77:383–392 [CrossRef][PubMed]
    [Google Scholar]
  3. Asker D., Awad T. S., Beppu T., Ueda K. 2008; Deinococcus misasensis and Deinococcus roseus, novel members of the genus Deinococcus, isolated from a radioactive site in Japan. Syst Appl Microbiol 31:43–49 [CrossRef][PubMed]
    [Google Scholar]
  4. Asker D., Awad T. S., Beppu T., Ueda K. 2009; Deinococcus aquiradiocola sp. nov., isolated from a radioactive site in Japan. Int J Syst Evol Microbiol 59:144–149 [CrossRef][PubMed]
    [Google Scholar]
  5. Barrow G. I., Feltham R. K. A. (editors) ( 1993 Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd edn. Cambridge: Cambridge University Press; [CrossRef]
    [Google Scholar]
  6. Battista J. R., Rainey F. A. 2001; Order I. Deinococcales Rainey, Nobre, Schumann, Stackebrandt and da Costa 1997, 513vp . In Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol. 1 pp. 395–403 Edited by Boone D. R., Castenholz R. W., Garrity G. M. New York: Springer-Verlag;
    [Google Scholar]
  7. Brooks B. W., Murray R. G. E. 1981; Nomenclature for “Micrococcus radiodurans” and other radiation-resistant cocci: Deinococcaceae fam. nov. and Deinococcus gen. nov., including five species. Int J Syst Bacteriol 31:353–360 [CrossRef]
    [Google Scholar]
  8. Callegan R. P., Nobre M. F., McTernan P. M., Battista J. R., Navarro-González R., McKay C. P., da Costa M. S., Rainey F. A. 2008; Description of four novel psychrophilic, ionizing radiation-sensitive Deinococcus species from alpine environments. Int J Syst Evol Microbiol 58:1252–1258 [CrossRef][PubMed]
    [Google Scholar]
  9. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef][PubMed]
    [Google Scholar]
  10. Collins M. D. 1994; Isoprenoid quinones. In Chemical Methods in Prokaryotic Systematics pp. 265–310 Edited by O’Donnell M. G. A. G. Chichester: Wiley;
    [Google Scholar]
  11. de Groot A., Chapon V., Servant P., Christen R., Saux M. F., Sommer S., Heulin T. 2005; Deinococcus deserti sp. nov., a gamma-radiation-tolerant bacterium isolated from the Sahara Desert. Int J Syst Evol Microbiol 55:2441–2446 [CrossRef][PubMed]
    [Google Scholar]
  12. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  13. Embley T. M., Odonnell A. G., Wait R., Rostron J. 1987; Lipid and cell wall amino acid composition in the classification of members of the genus Deinococcus . Syst Appl Microbiol 10:20–27 [CrossRef]
    [Google Scholar]
  14. Felsenstein J. 1993; phylip (phylogeny inference package), version 3.5.. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA
  15. Ferreira A. C., Nobre M. F., Rainey F. A., Silva M. T., Wait R., Burghardt J., Chung A. P., da Costa M. S. 1997; Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly thermophilic species from hot springs. Int J Syst Bacteriol 47:939–947 [CrossRef][PubMed]
    [Google Scholar]
  16. Gertz E. M. 2005; blast Scoring Parameters.. ftp://ftp.ncbi.nlm.nih.gov/blast/documents/developer/scoring.pdf
  17. Hirsch P., Gallikowski C. A., Siebert J., Peissl K., Kroppenstedt R., Schumann P., Stackebrandt E., Anderson R. 2004; Deinococcus frigens sp. nov., Deinococcus saxicola sp. nov., and Deinococcus marmoris sp. nov., low temperature and draught-tolerating, UV-resistant bacteria from continental Antarctica. Syst Appl Microbiol 27:636–645 [CrossRef][PubMed]
    [Google Scholar]
  18. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  19. Im W. T., Jung H. M., Ten L. N., Kim M. K., Bora N., Goodfellow M., Lim S., Jung J., Lee S. T. 2008; Deinococcus aquaticus sp. nov., isolated from fresh water, and Deinococcus caeni sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 58:2348–2353 [CrossRef][PubMed]
    [Google Scholar]
  20. Kämpfer P., Lodders N., Huber B., Falsen E., Busse H. J. 2008; Deinococcus aquatilis sp. nov., isolated from water. Int J Syst Evol Microbiol 58:2803–2806 [CrossRef][PubMed]
    [Google Scholar]
  21. Lai W. A., Kämpfer P., Arun A. B., Shen F. T., Huber B., Rekha P. D., Young C. C. 2006; Deinococcus ficus sp. nov., isolated from the rhizosphere of Ficus religiosa L.. Int J Syst Evol Microbiol 56:787–791 [CrossRef][PubMed]
    [Google Scholar]
  22. Mesbah M., Whitman W. B. 1989; Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine+cytosine of DNA. J Chromatogr A 479:297–306 [CrossRef][PubMed]
    [Google Scholar]
  23. O’Brien M., Colwell R. 1988; Characterization tests for numerical taxonomic studies. Methods Microbiol 19:69–104 [CrossRef]
    [Google Scholar]
  24. Perrière G., Gouy M. 1996; www-query: an on-line retrieval system for biological sequence banks. Biochimie 78:364–369 [CrossRef][PubMed]
    [Google Scholar]
  25. Rainey F. A., Nobre M. F., Schumann P., Stackebrandt E., da Costa M. S. 1997; Phylogenetic diversity of the deinococci as determined by 16S ribosomal DNA sequence comparison. Int J Syst Bacteriol 47:510–514 [CrossRef][PubMed]
    [Google Scholar]
  26. Rainey F. A., Ray K., Ferreira M., Gatz B. Z., Nobre M. F., Bagaley D., Rash B. A., Park M. J., Earl A. M. et al. 2005; Extensive diversity of ionizing-radiation-resistant bacteria recovered from Sonoran Desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample. Appl Environ Microbiol 71:5225–5235 [CrossRef][PubMed]
    [Google Scholar]
  27. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  28. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477[PubMed]
    [Google Scholar]
  29. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp. 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  30. Suresh K., Reddy G. S., Sengupta S., Shivaji S. 2004; Deinococcus indicus sp. nov., an arsenic-resistant bacterium from an aquifer in West Bengal, India. Int J Syst Evol Microbiol 54:457–461 [CrossRef][PubMed]
    [Google Scholar]
  31. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  32. Tindall B. J. 1990; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [CrossRef]
    [Google Scholar]
  33. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; International Committee on Bacterial Systematics. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  34. Zhang Y. Q., Sun C. H., Li W. J., Yu L. Y., Zhou J. Q., Zhang Y. Q., Xu L. H., Jiang C. L. 2007; Deinococcus yunweiensis sp. nov., a gamma- and UV-radiation-resistant bacterium from China. Int J Syst Evol Microbiol 57:370–375 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.013482-0
Loading
/content/journal/ijsem/10.1099/ijs.0.013482-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error