1887

Abstract

We report the isolation of a novel bacterium, strain C1, from the midgut of the tsetse fly , one of the vector insects responsible for transmission of the trypanosomes that cause sleeping sickness in sub-Saharan African countries. Strain C1 is a motile, facultatively anaerobic, rod-like bacterium (0.8–1.0 μm in diameter; 2–6 μm long) that grows as single cells or in chains. Optimum growth occurred at 25–35 °C, at pH 6.7–8.4 and in medium containing 5–20 g NaCl l. The bacterium hydrolysed urea and used -lysine, -ornithine, citrate, pyruvate, -glucose, -mannitol, inositol, -sorbitol, melibiose, amygdalin, -arabinose, arbutin, aesculin, -fructose, -galactose, glycerol, maltose, -mannose, raffinose, trehalose and -xylose; it produced acetoin, reduced nitrate to nitrite and was positive for -galactosidase and catalase. The DNA G+C content was 53.6 mol%. It was related phylogenetically to members of the genus , family , the type strain of being its closest relative (99 % similarity between 16S rRNA gene sequences). However, DNA–DNA relatedness between strain C1 and DSM 4576 was only 37.15 %. Therefore, on the basis of morphological, nutritional, physiological and fatty acid analysis and genetic criteria, strain C1 is proposed to be assigned to a novel species, sp. nov. (type strain C1 =DSM 22080 =CCUG 57457).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.013441-0
2010-06-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/6/1261.html?itemId=/content/journal/ijsem/10.1099/ijs.0.013441-0&mimeType=html&fmt=ahah

References

  1. Akman, L., Yamashita, A., Watanabe, H., Oshima, K., Shiba, T., Hattori, M. & Aksoy, S. ( 2002; ). Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia. Nat Genet 32, 402–407.[CrossRef]
    [Google Scholar]
  2. Aksoy, S. ( 2000; ). Tsetse: a haven for microorganisms. Parasitol Today 16, 114–119.[CrossRef]
    [Google Scholar]
  3. Azambuja, P., Feder, D. & Garcia, E. S. ( 2004; ). Isolation of Serratia marcescens in the midgut of Rhodnius prolixus: impact on the establishment of the parasite Trypanosoma cruzi in the vector. Exp Parasitol 107, 89–96.[CrossRef]
    [Google Scholar]
  4. Azambuja, P., Garcia, E. S. & Ratcliffe, N. A. ( 2005; ). Gut microbiota and parasite transmission by insect vectors. Trends Parasitol 21, 568–572.[CrossRef]
    [Google Scholar]
  5. Beard, C. B., O'Neill, S. L., Tesh, R. B., Richards, F. F. & Aksoy, S. ( 1993; ). Modification of arthropod vector competence via symbiotic bacteria. Parasitol Today 9, 179–183.[CrossRef]
    [Google Scholar]
  6. Benson, D. A., Boguski, M. S., Lipman, D. J., Ostell, J., Ouellette, B. F., Rapp, B. A. & Wheeler, D. L. ( 1999; ). GenBank. Nucleic Acids Res 27, 12–17.[CrossRef]
    [Google Scholar]
  7. Chapco, W. & Kellin, R. A. ( 1994; ). Persistence of ingested bacteria in the grasshopper gut. J Invertebr Pathol 64, 149–150.[CrossRef]
    [Google Scholar]
  8. De Koning, H. P. ( 2001; ). Transporters in African trypanosomes: role in drug action and resistance. Int J Parasitol 31, 512–522.[CrossRef]
    [Google Scholar]
  9. Durvasula, R. V., Gumbs, A., Panackal, A., Kruglov, O., Aksoy, S., Merrifield, R. B., Richards, F. F. & Beard, C. B. ( 1997; ). Prevention of insect-borne disease: an approach using transgenic symbiotic bacteria. Proc Natl Acad Sci U S A 94, 3274–3278.[CrossRef]
    [Google Scholar]
  10. Favia, G., Ricci, I., Damiani, C., Raddadi, N., Crotti, E., Marzorati, M., Rizzi, A., Urso, R., Brusetti, L. & other authors ( 2007; ). Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector. Proc Natl Acad Sci U S A 104, 9047–9051.[CrossRef]
    [Google Scholar]
  11. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  12. Geiger, A., Ravel, S., Frutos, R. & Cuny, G. ( 2005; ). Sodalis glossinidius (Enterobacteriaceae) and vectorial competence of Glossina palpalis gambiensis and Glossina morsitans morsitans for Trypanosoma congolense savannah type. Curr Microbiol 51, 35–40.[CrossRef]
    [Google Scholar]
  13. Geiger, A., Ravel, S., Mateille, T., Janelle, J., Patrel, D., Cuny, G. & Frutos, R. ( 2007; ). Vector competence of Glossina palpalis gambiensis for Trypanosoma brucei s.l. and genetic diversity of the symbiont Sodalis glossinidius. Mol Biol Evol 24, 102–109.
    [Google Scholar]
  14. Grimont, P. A. D. & Grimont, F. ( 1978; ). The genus Serratia. Annu Rev Microbiol 32, 221–248.[CrossRef]
    [Google Scholar]
  15. Grimont, F. & Grimont, P. A. D. ( 1992; ). The genus Serratia. In The Prokaryotes, 2nd edn, pp. 2822–2848. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. H. Schleifer. New York: Springer.
  16. Grimont, P. A. D., Grimont, F. & Starr, M. P. ( 1979; ). Serratia ficaria sp. nov., a bacterial species associated with Smyrna figs and the fig wasp Blastophaga psenes. Curr Microbiol 2, 277–282.[CrossRef]
    [Google Scholar]
  17. Guindon, S. & Gascuel, O. ( 2003; ). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52, 696–704.[CrossRef]
    [Google Scholar]
  18. Hall, T. A. ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98.
    [Google Scholar]
  19. Hungate, R. E. ( 1969; ). A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3B, 117–132.
    [Google Scholar]
  20. Husseneder, C. & Grace, J. K. ( 2005; ). Genetically engineered termite gut bacteria (Enterobacter cloacae) deliver and spread foreign genes in termite colonies. Appl Microbiol Biotechnol 68, 360–367.[CrossRef]
    [Google Scholar]
  21. Husseneder, C., Grace, J. K. & Oishi, D. E. ( 2005; ). Use of genetically engineered Escherichia coli to monitor ingestion, loss, and transfer of bacteria in termites. Curr Microbiol 50, 119–123.[CrossRef]
    [Google Scholar]
  22. Lamelas, A., Pérez-Brocal, V., Gómez-Valero, L., Gosalbes, M. J., Moya, A. & Latorre, A. ( 2008; ). Evolution of the secondary symbiont “Candidatus Serratia symbiotica” in aphid species of the subfamily Lachninae. Appl Environ Microbiol 74, 4236–4240.[CrossRef]
    [Google Scholar]
  23. Maidak, B. L., Cole, J. R., Lilburn, T. G., Parker, C. T., Jr, Saxman, P. R., Farris, R. J., Garrity, G. M., Olsen, G. J., Schmidt, T. M. & Tiedje, J. M. ( 2001; ). The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29, 173–174.[CrossRef]
    [Google Scholar]
  24. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  25. Miranda-Tello, E., Fardeau, M.-L., Cayol, J.-L., Thomas, P., Ostoa, P., Ramirez, F., Fernandez, L., Garcia, J.-L. & Ollivier, B. ( 2003; ). Desulfovibrio capillatus sp. nov., a long-chained sulfate-reducing bacterium isolated from Gulf of Mexico oil well. Anaerobe 9, 97–103.[CrossRef]
    [Google Scholar]
  26. Miranda-Tello, E., Fardeau, M.-L., Thomas, P., Ramirez, F., Casalot, L., Cayol, J.-L., Garcia, J.-L. & Ollivier, B. ( 2004; ). Petrotoga mexicana sp. nov., a novel thermophilic, anaerobic and xylanolytic bacterium isolated from an oil-producing well in the Gulf of Mexico. Int J Syst Evol Microbiol 54, 169–174.[CrossRef]
    [Google Scholar]
  27. Mitsuhashi, J. & Maramorosch, K. ( 1964; ). Leafhopper tissue culture: embryonic, nymphal and imaginal tissues from aseptic insects. Contrib Boyce Thompson Inst 22, 435–460.
    [Google Scholar]
  28. Mulugeta, W., Wilkes, J., Mulatu, W., Majiwa, P. A., Masake, R. & Peregrine, A. S. ( 1997; ). Long-term occurrence of Trypanosoma congolense resistant to diminazene, isometamidium and homidium in cattle at Ghibe, Ethiopia. Acta Trop 64, 205–217.[CrossRef]
    [Google Scholar]
  29. Oliver, K. M., Moran, N. A. & Hunter, M. S. ( 2006; ). Costs and benefits of a superinfection of facultative symbionts in aphids. Proc Biol Sci 273, 1273–1280.[CrossRef]
    [Google Scholar]
  30. O'Neill, S. L., Gooding, R. H. & Aksoy, S. ( 1993; ). Phylogenetically distant symbiotic microorganisms reside in Glossina midgut and ovary tissues. Med Vet Entomol 7, 377–383.[CrossRef]
    [Google Scholar]
  31. Rio, R. V., Hu, Y. & Aksoy, S. ( 2004; ). Strategies of the home-team: symbioses exploited for vector-borne disease control. Trends Microbiol 12, 325–336.[CrossRef]
    [Google Scholar]
  32. Robinson, A. S., Franz, G. & Atkinson, P. W. ( 2004; ). Insect transgenesis and its potential role in agricultural and human health. Insect Biochem Mol Biol 34, 113–120.[CrossRef]
    [Google Scholar]
  33. Tang, C., Sun, F., Zhang, X., Zhao, T. & Qi, J. ( 2004; ). Transgenic ice nucleation-active Enterobacter cloacae reduces cold hardiness of corn borer and cotton bollworm larvae. FEMS Microbiol Ecol 51, 79–86.[CrossRef]
    [Google Scholar]
  34. Thimm, T., Hoffman, A., Borkott, H., Munch, J. C. & Tebbe, C. C. ( 1998; ). The gut of the soil microarthropod Folsomia candida (Collembola) is a frequently changeable but selective habitat and a vector for microorganisms. Appl Environ Microbiol 64, 2660–2669.
    [Google Scholar]
  35. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  36. Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J. ( 1991; ). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173, 697–703.
    [Google Scholar]
  37. Welburn, S. C. & Maudlin, I. ( 1999; ). Tsetse–trypanosome interactions: rites of passage. Parasitol Today 15, 399–403.[CrossRef]
    [Google Scholar]
  38. Yang, Z. ( 1997; ). paml: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13, 555–556.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.013441-0
Loading
/content/journal/ijsem/10.1099/ijs.0.013441-0
Loading

Data & Media loading...

Supplements

Electron micrograph of cells of strain C1 from the midgut of . Bar, 5 µm.

IMAGE

Cellular fatty acid contents of strain C1 and type strains of closely related species. [PDF](41 KB)

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error