1887

Abstract

A novel xylan-degrading bacterium, designated XDB9, was isolated from forest humus collected from Gyeryong Mountain in Korea. Cells were Gram-positive, aerobic, motile and endospore-forming rods. A neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showed that strain XDB9 was most closely related to members of the genus . 16S rRNA gene sequence similarities between strain XDB9 and the type strains of species of the genus ranged from 98.0 to 98.5 %. The cell-wall peptidoglycan type of strain XDB9 was A4, which is based on -Lys–-Asp. Strain XDB9 contained iso-C and C 7 alcohol as the major fatty acids and MK-7 as the predominant menaquinone. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The DNA G+C content was 37.2 mol%. The DNA–DNA hybridization results and differential phenotypic properties showed that strain XDB9 could be distinguished from recognized species of the genus . It was concluded that strain XDB9 represents a new taxon for which the name sp. nov. is proposed. The type strain is XDB9 (=KCTC 13423=CCUG 57438).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.013367-0
2010-02-01
2021-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/2/281.html?itemId=/content/journal/ijsem/10.1099/ijs.0.013367-0&mimeType=html&fmt=ahah

References

  1. Ahmed I., Yokota A., Yamazoe A., Fujiwara T. 2007; Proposal of Lysinibacillus boronitolerans gen. nov., sp. nov., and transfer of Bacillus fusiformis to Lysinibacillus fusiformis comb. nov. and Bacillus sphaericus to Lysinibacillus sphaericus comb. nov. Int J Syst Evol Microbiol 571117–1125 [CrossRef]
    [Google Scholar]
  2. Ash C., Farrow J. A. E., Wallbanks S., Collins M. D. 1991; Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Lett Appl Microbiol 13:202–206
    [Google Scholar]
  3. Claus D., Berkeley R. C. W. 1986; Genus Bacillus Cohn 1872. In Bergey's Manual of Systematic Bacteriology vol 2 pp 1105–1139 Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  4. Claus D., Fritze D. 1989; Taxonomy of Bacillus . In Bacillus (Biotechnology Handbooks vol. 2) pp 5–26 Edited by Harwood C. R. New York: Plenum;
    [Google Scholar]
  5. Coughlan M. P., Hazlewood G. P. 1993; β -1,4-d-Xylan-degrading enzyme systems: biochemistry, molecular biology and applications. Biotechnol Appl Biochem 17:259–289
    [Google Scholar]
  6. Cowan S. T., Steel K. J. 1965 Manual for the Identification of Medical Bacteria London: Cambridge University Press;
    [Google Scholar]
  7. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  8. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  9. Felsenstein J. 1985; Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  10. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  11. Kluge A. G., Farris J. S. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32 [CrossRef]
    [Google Scholar]
  12. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207
    [Google Scholar]
  13. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  14. Lányí B. 1987; Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19:1–67
    [Google Scholar]
  15. Miller G. L. 1959; Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428 [CrossRef]
    [Google Scholar]
  16. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schall A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [CrossRef]
    [Google Scholar]
  17. Miwa H., Ahmed I., Yokota A., Fujiwara T. 2009; Lysinibacillus parviboronicapiens sp. nov., a low-boron-containing bacterium isolated from soil. Int J Syst Evol Microbiol 59:1427–1432 [CrossRef]
    [Google Scholar]
  18. Nakamura L. K., Shida O., Takagi H., Komagata K. 2002; Bacillus pycnus sp. nov. and Bacillus neidei sp. nov., round-spored bacteria from soil. Int J Syst Evol Microbiol 52:501–505
    [Google Scholar]
  19. Priest F. G., Goodfellow M., Todd C. 1988; A numerical classification of the genus Bacillus . J Gen Microbiol 134:1847–1882
    [Google Scholar]
  20. Rheims H., Frühling A., Schumann P., Rohde M., Stackebrandt E. 1999; Bacillus silvestris sp. nov., a new member of the genus Bacillus that contains lysine in its cell wall. Int J Syst Bacteriol 49:795–802 [CrossRef]
    [Google Scholar]
  21. Saitou N., Nei M. 1987; The neighbour-joining method; a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  22. Sasser M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids , MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  23. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477
    [Google Scholar]
  24. Shaw S., Keddie R. M. 1983; A numerical taxonomic study of the genus Kurthia with a revised description of Kurthia zopfii and a description of Kurthia gibsonii sp. nov. Syst Appl Microbiol 4:253–276 [CrossRef]
    [Google Scholar]
  25. Stackebrandt E., Ludwig W., Weizenegger M., Dorn S., McGill T. J., Fox G. E., Woese C. E., Schubert W., Schleifer K.-H. 1987; Comparative 16S rRNA oligonucleotide analyses and murein types of round-spore-forming bacilli and non-sporeforming relatives. J Gen Microbiol 133:2523–2529
    [Google Scholar]
  26. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  27. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  28. Timmell T. E. 1967; Recent progress in the chemistry of wood hemicelluloses. Wood Sci Technol 1:45–70 [CrossRef]
    [Google Scholar]
  29. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  30. Wood P. J., Erfle J. D., Teather R. M. 1988; Use of complex formation between Congo red and polysaccharides in detection and assay of polysaccharide hydrolases. Methods Enzymol 160:59–74
    [Google Scholar]
  31. Yoon J.-H., Kim H., Kim S.-B., Kim H.-J., Kim W. Y., Lee S. T., Goodfellow M., Park Y.-H. 1996; Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. Int J Syst Bacteriol 46:502–505 [CrossRef]
    [Google Scholar]
  32. Yoon J.-H., Lee S. T., Park Y.-H. 1998; Inter- and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rRNA gene sequences. Int J Syst Bacteriol 48:187–194 [CrossRef]
    [Google Scholar]
  33. Yoon J.-H., Kang K. H., Park Y.-H. 2003; Psychrobacter jeotgali sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 53:449–454 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.013367-0
Loading
/content/journal/ijsem/10.1099/ijs.0.013367-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error