1887

Abstract

Two aerobic, Gram-reaction-negative, non-spore-forming bacterial strains, 4M29 and 4M40, were isolated from cotton composts. The two strains grew in the presence of 0–5 % (w/v) NaCl (optimum growth in the absence of NaCl), at pH 6.0–8.0 (optimum, pH 7.0) and at 15–45 °C (optimum, 30 °C). The strains shared 97.1 % 16S rRNA gene sequence similarity. Strains 4M29 and 4M40 showed the next highest levels of 16S rRNA gene sequence similarity to Jip14 (95.6 and 94.4 %, respectively) and DCY14 (95.2 and 93.8 %). The level of DNA–DNA relatedness between strains 4M29 and 4M40 was 38 %. The two strains contained iso-C, summed feature 3 (comprising iso-C 2-OH and/or C 7) and iso-C 3-OH as major fatty acids, MK-7 as the major respiratory quinone, homospermidine as the only polyamine and phosphatidylethanolamine as the major polar lipid. The DNA G+C contents of strains 4M29 and 4M40 were 47.6 and 48.6 mol%, respectively. On the basis of phylogenetic and phenotypic data, strains 4M29 and 4M40 are considered to represent two novel species of the genus , for which the names sp. nov. (type strain 4M29 =KACC 10955 =JCM 15977) and sp. nov. (type strain 4M40 =KACC 10972 =JCM 15978) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.013318-0
2010-08-01
2020-09-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/8/1849.html?itemId=/content/journal/ijsem/10.1099/ijs.0.013318-0&mimeType=html&fmt=ahah

References

  1. Asker D., Beppu T., Ueda K. 2008; Nubsella zeaxanthinifaciens gen. nov., sp. nov. a zeaxanthin-producing bacterium of the family Sphingobacteriaceae isolated from freshwater. Int J Syst Evol Microbiol 58601–606 [CrossRef]
    [Google Scholar]
  2. Breznak J. A., Costilow R. N. 1994; Physicochemical factors in growth. In Methods for General and Molecular Bacteriology . pp 137–154 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
  3. Busse H.-J., Auling G. 1988; Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . Syst Appl Microbiol 11:1–8 [CrossRef]
    [Google Scholar]
  4. Busse H.-J., Bunka S., Hensel A., Lubitz W. 1997; Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47:698–708 [CrossRef]
    [Google Scholar]
  5. Groth I., Schumann P., Weiss N., Martin K., Rainey F. A. 1996; Agrococcus jenensis gen. nov., sp. nov. a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46:234–239 [CrossRef]
    [Google Scholar]
  6. Hiraishi A. 1992; Direct automated sequencing of 16S rDNA amplified by polymerase chain reaction from bacterial cultures without DNA purification. Lett Appl Microbiol 15:210–213 [CrossRef]
    [Google Scholar]
  7. Kim M. K., Na J. R., Cho D. H., Soung N. K., Yang D. C. 2007; Parapedobacter koreensis gen. nov., sp. nov.. Int J Syst Evol Microbiol 57:1336–1341 [CrossRef]
    [Google Scholar]
  8. Kim M. K., Kim Y. A., Kim Y. J., Soung N. K., Yi T. H., Kim S. Y., Yang D. C. 2008; Parapedobacter soli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 58:337–340 [CrossRef]
    [Google Scholar]
  9. Kumar S., Tamura K., Nei M. 2004; mega 3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  10. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  11. MIDI 1999 Sherlock Microbial Identification System Operating Manual , version 3.0 Newark, DE: MIDI Inc;
    [Google Scholar]
  12. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [CrossRef]
    [Google Scholar]
  13. Ntougias S., Fasseas C., Zervakis G. I. 2007; Olivibacter sitiensis gen. nov., sp. nov., isolated from alkaline olive-oil mill wastes in the region of Sitia, Crete. Int J Syst Evol Microbiol 57:398–404 [CrossRef]
    [Google Scholar]
  14. Pankratov T. A., Tindall B. J., Liesack W., Dedysh S. N. 2007; Mucilaginibacter paludis gen. nov., sp. nov. and Mucilaginibacter gracilis sp. nov. pectin-, xylan- and laminarin-degrading members of the family Sphingobacteriaceae from acidic Sphagnum peat bog. Int J Syst Evol Microbiol 57:2349–2354 [CrossRef]
    [Google Scholar]
  15. Reasoner D. J., Geldreich E. E. 1985; A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7
    [Google Scholar]
  16. Reichenbach H. 1992; The order Cytophagales . In The Prokaryotes , 2nd edn. vol 4 pp 3631–3675 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  17. Sasser M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids , MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  18. Seldin L., Dubnau D. 1985; Deoxyribonucleic acid homology among Bacillus polymyxa , Bacillus macerans , Bacillus azotofixans , and other nitrogen-fixing Bacillus strains. Int J Syst Bacteriol 35:151–154 [CrossRef]
    [Google Scholar]
  19. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology . pp 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
  20. Steyn P. L., Segers P., Vancanneyt M., Sandra P., Kersters K., Joubert J. J. 1998; Classification of heparinolytic bacteria into a new genus, Pedobacter , comprising four species: Pedobacter heparinus comb.nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov.Proposal of the family Sphingobacteriaceae fam. nov. Int J Syst Bacteriol 48:165–177 [CrossRef]
    [Google Scholar]
  21. Vaz-Moreira I., Nobre M. F., Nunes O. C., Manaia C. M. 2007; Pseudosphingobacterium domesticum gen. nov., sp. nov. isolated from home-made compost. Int J Syst Evol Microbiol 57:1535–1538 [CrossRef]
    [Google Scholar]
  22. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703
    [Google Scholar]
  23. Weon H. Y., Kim B. Y., Lee C. M., Hong S. B., Jeon Y. A., Koo B. S., Kwon S. W. 2009 Solitalea koreensis gen. nov., sp. nov. and the reclassification of [ Flexibacter ] canadensis as Solitalea canadensis comb. nov. Int J Syst Evol Microbiol 59, 1969–1975. [CrossRef]
  24. Yabuuchi E., Kaneko T., Yano I., Moss C. W., Miyoshi N. 1983; Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb.nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: glucose-nonfermenting gram-negative rods in CDC groups IIK-2 and IIb. Int J Syst Bacteriol 33:580–598 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.013318-0
Loading
/content/journal/ijsem/10.1099/ijs.0.013318-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error