1887

Abstract

A polycyclic aromatic hydrocarbon-degrading marine bacterium, designated strain P-4, was isolated from oil-polluted saline soil in Xianhe, Shangdong Province, China. Strain P-4 was Gram-negative-staining with curved to spiral rod-shaped cells and grew optimally with 3–6 % (w/v) NaCl and at 30 °C. The predominant fatty acids were C 7 (35.0 %), C (25.0 %), C 7 (17.9 %), C (6.2 %) and C cyclo (5.2 %). The major respiratory quinone was Q-9 and the genomic DNA G+C content was 61.2±1.0 mol%. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain P-4 belonged to the genus of the class . DNA–DNA hybridization with DSM 17429 showed relatedness of 36.0 %, and lower values were obtained with respect to other species. Based on physiological and biochemical tests and 16S rRNA gene sequence analysis as well as DNA–DNA relatedness, strain P-4 should be placed in the genus within a novel species. The name sp. nov. is proposed, with P-4 (=CGMCC 1.6849 =JCM 14850) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.013201-0
2010-05-01
2021-03-03
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/5/1125.html?itemId=/content/journal/ijsem/10.1099/ijs.0.013201-0&mimeType=html&fmt=ahah

References

  1. Acinas S. G., Antón J., Rodríguez-Valera F. 1999; Diversity of free-living and attached bacteria in offshore western Mediterranean waters as depicted by analysis of genes encoding 16S rRNA. Appl Environ Microbiol 65:514–522
    [Google Scholar]
  2. Baron E. J., Finegold S. M. 1990 Bailey and Scott's Diagnostic Microbiology , 8th edn. St Louis: Mosby;
    [Google Scholar]
  3. Cowan S. T., Steel K. J. 1965 Manual for the Identification of Medical Bacteria London: Cambridge University Press;
    [Google Scholar]
  4. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. (editors) 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  5. Guerin W. F., Jones G. E. 1988; Two-stage mineralization of phenanthrene by estuarine enrichment cultures. Appl Environ Microbiol 54:929–936
    [Google Scholar]
  6. Habe H., Omori T. 2003; Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci Biotechnol Biochem 67:225–243 [CrossRef]
    [Google Scholar]
  7. Hedlund B. P., Staley J. T. 2001; Vibrio cyclotrophicus sp. nov., a polycyclic aromatic hydrocarbon (PAH)-degrading marine bacterium. Int J Syst Evol Microbiol 51:61–66
    [Google Scholar]
  8. Ivanova E. P., Kiprianova E. A., Mikhailov V. V., Levanova G. F., Garagulya A. D., Gorshkova N. M., Vysotskii M. V., Nicolau D. V., Yumoto N. other authors 1998; Phenotypic diversity of Pseudoalteromonas citrea from different marine habitats and emendation of the description. Int J Syst Bacteriol 48:247–256 [CrossRef]
    [Google Scholar]
  9. Johnson J. L. 1994; Similarity analysis of DNAs. In Methods for General and Molecular Bacteriology . pp 655–681 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
  10. Kasai Y., Kishira H., Harayama S. 2002; Bacteria belonging to the genus Cycloclasticus play a primary role in the degradation of aromatic hydrocarbons released in a marine environment. Appl Environ Microbiol 68:5625–5633 [CrossRef]
    [Google Scholar]
  11. Kodama Y., Stiknowati L., Ueki A., Ueki K., Watanabe K. 2008; Thalassospira tepidiphila sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from seawater. Int J Syst Evol Microbiol 58:711–715 [CrossRef]
    [Google Scholar]
  12. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207
    [Google Scholar]
  13. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Bioinformatics 5:150–163
    [Google Scholar]
  14. Kwon K. K., Lee H. S., Yang S. H., Kim H. J. 2005; Kordiimonas gwangyangensis gen. nov., sp. nov., a marine bacterium isolated from marine sediments that forms a distinct phyletic lineage ( Kordiimonadales ord. nov.) in the ‘ Alphaproteobacteria ’. Int J Syst Evol Microbiol 55:2033–2037 [CrossRef]
    [Google Scholar]
  15. Lányí B. 1987; Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19:1–67
    [Google Scholar]
  16. Liu C., Wu Y., Li L., Ma Y., Shao Z. 2007; Thalassospira xiamenensis sp. nov. and Thalassospira profundimaris sp. nov. Int J Syst Evol Microbiol 57:316–320 [CrossRef]
    [Google Scholar]
  17. López-López A., Pujalte M. J., Benlloch S., Mata-Roig M., Rosselló-Mora R., Garay E., Rodríguez-Valera F. 2002; Thalassospira lucentensis gen. nov., sp. nov., a new marine member of the α - Proteobacteria . Int J Syst Evol Microbiol 52:1277–1283 [CrossRef]
    [Google Scholar]
  18. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  19. Menzie C. A., Potocki B. B., Santodonato J. 1992; Exposure to carcinogenic PAHs in the environment. Environ Sci Technol 26:1278–1284 [CrossRef]
    [Google Scholar]
  20. Rainey F. A., Dorsch M., Morgan H. W., Stackebrandt E. 1992; 16S rDNA analysis of Spirochaeta thermophila : position and implications for the systematics of the order Spirochaetales . Syst Appl Microbiol 16:197–202
    [Google Scholar]
  21. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  22. Sasser M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids , MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  23. Sohn J. H., Kwon K. K., Kang J. H., Jung H. B., Kim H. J. 2004; Novosphingobium pentaromativorans sp. nov., a high-molecular-mass polycyclic aromatic hydrocarbon-degrading bacterium isolated from estuarine sediment. Int J Syst Evol Microbiol 54:1483–1487 [CrossRef]
    [Google Scholar]
  24. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  25. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  26. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  27. Zakrzewska-Cerwinska J., Mordarski M., Goodfellow M. 1988; DNA base composition and homology values in the classification of some Rhodococcus species. J Gen Microbiol 134:2807–2813
    [Google Scholar]
  28. Zhao B., Wang H., Mao X., Li R. 2009; Biodegradation of phenanthrene by a halophilic bacterial consortium under aerobic conditions. Curr Microbiol 58:205–210 [CrossRef]
    [Google Scholar]
  29. Zumft W. G. 1992; The denitrifying bacteria. In The Prokaryotes: a Handbook on the Biology of Bacteria , 2nd edn. pp 554–582 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.013201-0
Loading
/content/journal/ijsem/10.1099/ijs.0.013201-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error