1887

Abstract

A Gram-negative, aerobic, rod-shaped, motile, oxidase-positive, catalase-negative bacterium, designated strain BL03, was isolated from landfill soil in Pohang, Republic of Korea. Colonies on Luria–Bertani agar plates were yellow. The strain grew in the presence of 0–3 % (w/v) NaCl, at 15–42 °C and at pH 5.0–9.5. The predominant ubiquinone was Q-10, and the major cellular fatty acids were C 6, C 2-OH and C 7. Polar lipids detected were phosphatidylmonomethylethanolamine, diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, sphingoglycolipid and an unknown glycolipid. Spermidine was identified as the major polyamine component. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain BL03 belongs to the genus with high sequence similarity to JSS54 (97.8 %), RB2256 (97.4 %) and S37 (96.9 %). Levels of DNA–DNA relatedness between strain BL03 and the above three type strains were only 10.3–40.3 %. The DNA G+C content of strain BL03 was 65.9 mol%. Based on the data presented, strain BL03 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is BL03 (=KCTC 22405 =JCM 15910).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.013128-0
2010-07-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/7/1682.html?itemId=/content/journal/ijsem/10.1099/ijs.0.013128-0&mimeType=html&fmt=ahah

References

  1. Atlas, R. M. ( 1993; ). In Handbook of Microbiological Media. Edited by L. C. Parks. Boca Raton, FL: CRC Press.
  2. Baker, G. C., Smith, J. J. & Cowan, D. A. ( 2003; ). Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 55, 541–555.[CrossRef]
    [Google Scholar]
  3. Buck, J. D. ( 1982; ). Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44, 992–993.
    [Google Scholar]
  4. Busse, H.-J. & Auling, G. ( 1988; ). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 11, 1–8.[CrossRef]
    [Google Scholar]
  5. Busse, H.-J., Kämpfer, P. & Denner, E. B. M. ( 1999; ). Chemotaxonomic characterisation of Sphingomonas. J Ind Microbiol Biotechnol 23, 242–251.[CrossRef]
    [Google Scholar]
  6. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  7. Felsenstein, J. ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef]
    [Google Scholar]
  8. Gerhardt, P., Murray, R. G. E., Wood, W. A. & Krieg, N. R. (editors) ( 1994; ). Methods for General and Molecular Bacteriology. Washington, DC: American Society for Microbiology.
  9. Godoy, F., Vancanneyt, M., Martinez, M., Steinbuchel, A., Swings, J. & Rehm, B. H. A. ( 2003; ). Sphingopyxis chilensis sp. nov., a chlorophenol-degrading bacterium that accumulates polyhydroxyalkanoate and transfer of Sphingomonas alaskensis to Sphingopyxis alaskensis comb. nov. Int J Syst Evol Microbiol 53, 473–477.[CrossRef]
    [Google Scholar]
  10. Gonzalez, J. M. & Saiz-Jimenez, C. ( 2002; ). A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 4, 770–773.[CrossRef]
    [Google Scholar]
  11. Hanker, J. S. & Rabin, A. N. ( 1975; ). Color reaction streak test for catalase-positive microorganisms. J Clin Microbiol 2, 463–464.
    [Google Scholar]
  12. Heimbrook, M. E., Wang, W. L. & Campbell, G. ( 1989; ). Staining bacterial flagella easily. J Clin Microbiol 27, 2612–2615.
    [Google Scholar]
  13. Hirayama, H., Tamaoka, J. & Horikoshi, K. ( 1996; ). Improved immobilization of DNA to microwell plates for DNA-DNA hybridization. Nucleic Acids Res 24, 4098–4099.[CrossRef]
    [Google Scholar]
  14. Kämpfer, P., Witzenberger, R., Denner, E., Busse, H.-J. & Neef, A. ( 2002; ). Sphingopyxis witflariensis sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 52, 2029–2034.[CrossRef]
    [Google Scholar]
  15. Kim, B.-S., Lim, Y. W. & Chun, J. ( 2008; ). Sphingopyxis marina sp. nov. and Sphingopyxis litoris sp. nov., isolated from seawater. Int J Syst Evol Microbiol 58, 2415–2419.[CrossRef]
    [Google Scholar]
  16. Kluge, A. G. & Farris, J. S. ( 1969; ). Quantitative phyletics and the evolution of anurans. Syst Zool 18, 1–32.[CrossRef]
    [Google Scholar]
  17. Lee, M., Ten, L. N., Lee, H.-W., Oh, H. W., Im, W.-T. & Lee, S.-T. ( 2008; ). Sphingopyxis ginsengisoli sp. nov., isolated from soil of a ginseng field in South Korea. Int J Syst Evol Microbiol 58, 2342–2347.[CrossRef]
    [Google Scholar]
  18. Pal, R., Bhasin, V. K. & Lal, R. ( 2006; ). Proposal to reclassify [Sphingomonas] xenophaga Stolz et al. 2000 and [Sphingomonas] taejonensis Lee et al. 2001 as Sphingobium xenophagum comb. nov. and Sphingopyxis taejonensis comb. nov., respectively. Int J Syst Evol Microbiol 56, 667–670.[CrossRef]
    [Google Scholar]
  19. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  20. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  21. Sasser, M. ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  22. Stolz, A., Busse, H.-J. & Kämpfer, P. ( 2007; ). Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 57, 572–576.[CrossRef]
    [Google Scholar]
  23. Takeuchi, M., Hamana, K. & Hiraishi, A. ( 2001; ). Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51, 1405–1417.
    [Google Scholar]
  24. Tamura, K., Dudley, J., Nei, M. & Kumar, S. ( 2007; ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef]
    [Google Scholar]
  25. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  26. Tindall, B. J. ( 1990; ). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66, 199–202.[CrossRef]
    [Google Scholar]
  27. Vancanneyt, M., Schut, F., Snauwaert, C., Goris, J., Swings, J. & Gottschal, J. ( 2001; ). Sphingomonas alaskensis sp. nov., a dominant bacterium from a marine oligotrophic environment. Int J Syst Evol Microbiol 51, 73–79.
    [Google Scholar]
  28. Xin, H., Itoh, T., Zhou, P., Suzuki, K., Kamekura, M. & Nakase, T. ( 2000; ). Natrinema versiforme sp. nov., an extremely halophilic archaeon from Aibi salt lake, Xinjiang, China. Int J Syst Evol Microbiol 50, 1297–1303.[CrossRef]
    [Google Scholar]
  29. Yoon, J.-H. & Oh, T.-K. ( 2005; ). Sphingopyxis flavimaris sp. nov., isolated from sea water of the Yellow Sea in Korea. Int J Syst Evol Microbiol 55, 369–373.[CrossRef]
    [Google Scholar]
  30. Yoon, J.-H., Lee, C.-H., Yeo, S.-H. & Oh, T.-K. ( 2005; ). Sphingopyxis baekryungensis sp. nov., an orange-pigmented bacterium isolated from sea water of the Yellow Sea in Korea. Int J Syst Evol Microbiol 55, 1223–1227.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.013128-0
Loading
/content/journal/ijsem/10.1099/ijs.0.013128-0
Loading

Data & Media loading...

Supplements

vol. , part 7, pp. 1682 - 1686

Two-dimensional thin-layer chromatogram of polar lipids of strain BL03 . Chloroform/methanol/water (65:25:4, by vol.) was used in the first direction, followed by chloroform/acetic acid/methanol/water (80:15:12:4, by vol.) in the second direction. The following spray reagents were used for detection: (a) molybdenum blue (for phospholipids); (b) α-naphthol-sulfuric acid reagent (for glycolipids). DPG, diphosphatidylglycerol; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PG, phosphatidylglycerol; PL, unknown phospholipid; SGL, sphingoglycolipid; GL1, unknown glycolipid.



IMAGE

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error