1887

Abstract

The algal flora of subaerial habitats in the tropics remains largely unexplored, despite the fact that it potentially encompasses a wealth of new evolutionary diversity. Here we present a detailed morphological and molecular characterization of an autosporic coccoid green alga isolated from decaying wood in a natural forest in Singapore. Depending on culture conditions, this alga formed globular to irregularly oval solitary cells. Autosporulation was the only mode of reproduction observed. The cell periphery was filled with numerous vacuoles, and a single parietal chloroplast contained a conspicuous pyrenoid surrounded by a bipartite starch envelope. The cell wall was composed of a thick inner layer and a thin trilaminar outer layer, and the cell surface was ornamented with a few delicate ribs. Phylogenetic analyses of 18S rRNA gene sequences placed our strain in the family Scenedesmaceae (Sphaeropleales, Chlorophyceae) as a strongly supported sister branch of the genus . Analyses of an alternative phylogenetic marker widely used for the Scenedesmaceae, the ITS2 region, confirmed that the strain is distinct from any scenedesmacean alga sequenced to date, but is related to the genus , despite lacking the defining phenotypic features of (cell wall with four sporopolleninic layers ornamented with peculiar submicroscopic structures). Collectively, our results establish that we identified a novel, previously undocumented, evolutionary lineage of scenedesmacean algae necessitating its description as a new species in a new genus. We propose it be named gen. et sp. nov. A cryopreserved holotype specimen has been deposited into the Culture Collection of Algae of Charles University in Prague, Czech Republic (CAUP) as CAUP C-H8001.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.012963-0
2010-05-01
2020-01-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/5/1224.html?itemId=/content/journal/ijsem/10.1099/ijs.0.012963-0&mimeType=html&fmt=ahah

References

  1. Abramoff, M. D., Magelhaes, P. J. & Ram, S. J. ( 2004; ). Image processing with ImageJ. Biophoton Int 11, 36–42.
    [Google Scholar]
  2. An, S. S., Friedl, T. & Hegewald, E. ( 1999; ). Phylogenetic relationships of Scenedesmus and Scenedesmus-like coccoid green algae as inferred from IST-2 rDNA sequence comparisons. Plant Biol 1, 418–428.[CrossRef]
    [Google Scholar]
  3. Bischoff, H. W. & Bold, H. C. ( 1963; ). Phycological studies. IV. Some soil algae from Enchanted Rock and related algal species. Univ Texas Publ 6318, 1–95.
    [Google Scholar]
  4. Eliáš, M., Neustupa, J. & Škaloud, P. ( 2008; ). Elliptochloris bilobata var. corticola var. nov. (Trebouxiophyceae, Chlorophyta), a novel subaerial coccal green alga. Biologia 63, 791–798.
    [Google Scholar]
  5. Ettl, H. & Gärtner, G. ( 1995; ). Syllabus der Boden-, Luft- und Flechtenalgen. Stuttgart: Gustav Fischer (in German).
  6. Fawley, M. W., Fawley, K. P. & Owen, H. A. ( 2005; ). Diversity and ecology of small coccoid green algae from Lake Itasca, Minnesota, USA, including Meyerella planktonica, gen. et sp. nov. Phycologia 44, 35–48.[CrossRef]
    [Google Scholar]
  7. Felsenstein, J. ( 1978; ). Cases in which parsimony or compatibility methods will be positively misleading. Syst Zool 27, 401–410.[CrossRef]
    [Google Scholar]
  8. Felsenstein, J. ( 2004; ). phylip (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle; 2004. http://evolution.genetics.washington.edu/phylip.html.
  9. Fott, B. & Nováková, M. ( 1969; ). A monograph of the genus Chlorella. The fresh water species. In Studies in Phycology, pp. 10–74. Edited by B. Fott. Praha: Academia.
  10. Friedl, T., Besendahl, A., Pfeiffer, P. & Bhattacharya, D. ( 2000; ). The distribution of group I introns in lichen algae suggests that lichenization facilitates intron lateral transfer. Mol Phylogenet Evol 14, 342–352.[CrossRef]
    [Google Scholar]
  11. Fritz, L. & Triemer, R. E. ( 1985; ). A rapid simple technique utilizing calcofluor white M2R for the visualization of dinoflagellate thecal plates. J Phycol 21, 662–664.
    [Google Scholar]
  12. Gascuel, O. ( 1997; ). bionj: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 14, 685–695.[CrossRef]
    [Google Scholar]
  13. Hanagata, N. ( 1998; ). Phylogeny of the subfamily Scotiellocystoideae (Chlorophyceae, Chlorophyta) and related taxa inferred from 18S ribosomal RNA gene sequence data. J Phycol 34, 1049–1054.[CrossRef]
    [Google Scholar]
  14. Hegewald, E. ( 1978; ). New subdivision of genus Scenedesmus. Nova Hedwigia 30, 343–376.
    [Google Scholar]
  15. Hegewald, E. & Deason, T. R. ( 1989; ). Pseudodidymocystis, a new genus of Scenedesmaceae (Chlorophyceae). Arch Hydrobiol 82, 119–127.
    [Google Scholar]
  16. Hegewald, E. & Hanagata, N. ( 2000; ). Phylogenetic studies on Scenedesmaceae (Chlorophyta). Arch Hydrobiol 136, 29–49.
    [Google Scholar]
  17. Hegewald, E. & Wolf, M. ( 2003; ). Phylogenetic relationships of Scenedesmus and Acutodesmus (Chlorophyta, Chlorophyceae) as inferred from 18S rDNA and IST-2 sequence comparisons. Plant Syst Evol 241, 185–191.[CrossRef]
    [Google Scholar]
  18. Hegewald, E., Coesel, P. F. M. & Hegewald, P. ( 2002; ). A phytoplankton collection from Bali, with the description of a new Desmodesmus species (Chlorophyta, Scenedesmaceae). Arch Hydrobiol 143, 51–78.
    [Google Scholar]
  19. Hegewald, E., Schmidt, A., Braband, A. & Tsarekno, P. ( 2005; ). Revision of the Desmodesmus (Sphaeropleales, Scenedesmaceae) species with lateral spines. 2. The multi-spined to spineless taxa. Algol Stud 116, 1–38.[CrossRef]
    [Google Scholar]
  20. Helms, G., Friedl, T., Rambold, G. & Mayrhofer, H. ( 2001; ). Identification of photobionts from the lichen family Physciaceae using algal-specific ITS rDNA sequencing. Lichenologist 33, 73–86.[CrossRef]
    [Google Scholar]
  21. Hepperle, D., Hegewald, E. & Krienitz, L. ( 2000; ). Phylogenetic position of the Oocystaceae (Chlorophyta). J Phycol 36, 590–595.[CrossRef]
    [Google Scholar]
  22. Hindák, F. ( 1990; ). Studies on the chlorococcal algae (Chlorophyceae). V. Biologické práce (Bratislava) 36, 1–225.
    [Google Scholar]
  23. Huelsenbeck, J. P. & Ronquist, F. ( 2001; ). mrbayes: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755.[CrossRef]
    [Google Scholar]
  24. Huss, V. A. & Sogin, M. L. ( 1990; ). Phylogenetic position of some Chlorella species within the chlorococcales based upon complete small-subunit ribosomal RNA sequences. J Mol Evol 31, 432–442.[CrossRef]
    [Google Scholar]
  25. Huss, V. A. R., Frank, C., Hartmann, E. C., Hirmer, M., Kloboucek, A., Seidel, B. M., Wenzeler, P. & Kessler, E. ( 1999; ). Biochemical taxonomy and molecular phylogeny of the genus Chlorella sensu lato (Chlorophyta). J Phycol 35, 587–598.[CrossRef]
    [Google Scholar]
  26. Jeon, S. L. & Hegewald, E. ( 2006; ). A revision of the species Desmodesmus perforatus and D. tropicus (Scenedesmaceae, Chlorophyceae, Chlorophyta). Phycologia 45, 567–584.[CrossRef]
    [Google Scholar]
  27. Johnson, J. L., Fawley, M. W. & Fawley, K. P. ( 2007; ). The diversity of Scenedesmus and Desmodesmus (Chlorophyceae) in Itasca State Park, Minnesota, USA. J Phycol 46, 214–229.[CrossRef]
    [Google Scholar]
  28. Kalina, T. & Punčochářová, M. ( 1987; ). Taxonomy of the subfamily Scotiellocystoideae Fott 1976 (Chlorellaceae, Chlorophyceae). Arch Hydrobiol 73, 473–521.
    [Google Scholar]
  29. Katana, A., Kwiatowski, J., Spalik, K., Zakrys, B., Szalacha, E. & Szymanska, H. ( 2001; ). Phylogenetic position of Koliella (Chlorophyta) as inferred from nuclear and chloroplast small subunit rDNA. J Phycol 37, 443–451.[CrossRef]
    [Google Scholar]
  30. Komárek, J. & Fott, B. ( 1983; ). Familie Scenedesmaceae. In Das Phytoplankton des Süßwassers 7Chlorococcales, pp. 747–945. Edited by G. Huber-Pestalozzi. Stuttgart: Schweizerbart.
  31. Krienitz, L., Hegewald, E., Hepperle, D. & Wolf, M. ( 2003; ). The systematics of coccoid green algae: 18S rRNA gene sequence data versus morphology. Biologia (Bratisl) 58, 437–446.
    [Google Scholar]
  32. Lewis, L. A. & Flechtner, V. R. ( 2004; ). Cryptic species of Scenedesmus (Chlorophyta) from desert soil communities of western North America. J Phycol 40, 1127–1137.[CrossRef]
    [Google Scholar]
  33. Mathews, D. H., Disney, M. D., Childs, J. L., Schroeder, S. J., Zuker, M. & Turner, D. H. ( 2004; ). Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci U S A 101, 7287–7292.[CrossRef]
    [Google Scholar]
  34. Mattox, K. R. & Steward, K. D. ( 1984; ). Classification of the green algae: a concept based on comparative cytology. In Systematics of the Green Algae, pp. 265–292. Edited by D. E. G. Irvine & D. M. John. London: Academic Press.
  35. Neustupa, J., Eliáš, M. & Šejnohová, L. ( 2007; ). A taxonomic study of two Stichococcus species (Trebouxiophyceae, Chlorophyta) with a starch-enveloped pyrenoid. Nova Hedwigia 84, 51–63.[CrossRef]
    [Google Scholar]
  36. Neustupa, J., Němcová, Y., Eliáš, M. & Škaloud, P. ( 2009; ). Kalinella bambusicola gen. et sp. nov. (Trebouxiophyceae, Chlorophyta), a novel coccoid Chlorella-like subaerial alga from Southeast Asia. Phycol Res 57, 159–169.[CrossRef]
    [Google Scholar]
  37. Oltmanns, F. ( 1904; ). Morphologie und Biologie der Algen. Band I. Jena: G. Fischer.
  38. Philippe, H., Zhou, Y., Brinkmann, H., Rodrigue, N. & Delsuc, F. ( 2005; ). Heterotachy and long-branch attraction in phylogenetics. BMC Evol Biol 5, 50 [CrossRef]
    [Google Scholar]
  39. Poulíčková, A., Žižka, Z., Hašler, P. & Benada, O. ( 2007; ). Zygnematalean zygospores: morphological features and use in species identification. Folia Microbiol (Praha) 52, 135–145.[CrossRef]
    [Google Scholar]
  40. Rindi, F., López-Bautista, J. M., Sherwood, A. R. & Guiry, M. D. ( 2006; ). Morphology and phylogenetic position of Spongiochrysis hawaiiensis gen. et sp. nov., the first known terrestrial member of the order Cladophorales (Ulvophyceae, Chlorophyta). Int J Syst Evol Microbiol 56, 913–922.[CrossRef]
    [Google Scholar]
  41. Senousy, H. H., Beakes, G. W. & Hack, E. ( 2004; ). Phylogenetic placement of Botryococcus braunii (Trebouxiophyceae) and Botryococcus sudeticus isolate UTEX 2629 (Chlorophyceae). J Phycol 40, 412–423.[CrossRef]
    [Google Scholar]
  42. Shimodaira, H. ( 2002; ). An approximately unbiased test of phylogenetic tree selection. Syst Biol 51, 492–508.[CrossRef]
    [Google Scholar]
  43. Shimodaira, H. & Hasegawa, M. ( 2001; ). consel: for assessing the confidence of phylogenetic tree selection. Bioinformatics 17, 1246–1247.[CrossRef]
    [Google Scholar]
  44. Stamatakis, A. ( 2006; ). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690.[CrossRef]
    [Google Scholar]
  45. Stamatakis, A., Hoover, P. & Rougemont, J. ( 2008; ). A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 57, 758–771.[CrossRef]
    [Google Scholar]
  46. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  47. Tsarenko, P. M. & Petlevanny, O. A. ( 2001; ). Doplolnenie k ‘Raznoobraziju vodoroslej Ukrainy’. Algologia Suppl. (unnumbered), 1–130 (in Russian).
    [Google Scholar]
  48. Tsarenko, P. M., Hegewald, E. & Braband, A. ( 2005; ). Scenedesmus-like algae of Ukraine. 1. Diversity of taxa from water bodies in Volyn Polissia. Algol Stud 118, 1–45.[CrossRef]
    [Google Scholar]
  49. van Hannen, E. J., Fink, P. & Lürling, M. ( 2002; ). A revised secondary structure model for the internal transcribed spacer 2 of the green algae Scenedesmus and Desmodesmus and its implication for the phylogeny of these algae. Eur J Phycol 37, 203–208.[CrossRef]
    [Google Scholar]
  50. Vanormelingen, P., Hegewald, E., Braband, A., Kitschke, M., Friedl, T., Sabbe, K. & Vyverman, W. ( 2007; ). The systematics of small spineless Desmodesmus species, D. costato-granulatus (Sphaeropleales, Chlorophyceae), based on ITS2 rDNA sequence analyses and cell wall morphology. J Phycol 43, 378–396.[CrossRef]
    [Google Scholar]
  51. White, T. J., Bruns, T., Lee, S. & Taylor, J. W. ( 1990; ). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications, pp. 315–322. Edited by M. A. Innis, D. H. Gelfand, J. J. Sninsky & T. J. White. New York: Academic Press.
  52. Wolf, M., Hegewald, E., Hepperle, D. & Krienitz, L. ( 2003a; ). Phylogenetic position of the Golenkiniaceae (Chlorophyta) as inferred from 18S rDNA sequence data. Biologia (Bratisl) 58, 433–436.
    [Google Scholar]
  53. Wolf, M., Krienitz, L. & Hepperle, D. ( 2003b; ). On the phylogeny of Radiococcus and Schizochlamydella (Radiococcaceae, Chlorophyta). Biologia (Bratisl) 58, 759–765.
    [Google Scholar]
  54. Wuyts, J., De Rijk, P., Van de Peer, Y., Pison, G., Rousseeuw, P. & De Wachter, R. ( 2000; ). Comparative analysis of more than 3000 sequences reveals the existence of two pseudoknots in area V4 of eukaryotic small subunit ribosomal RNA. Nucleic Acids Res 28, 4698–4708.[CrossRef]
    [Google Scholar]
  55. Zhang, J. M., Huss, V. A. R., Sun, X. P., Chang, K. J. & Pang, D. B. ( 2008; ). Morphology and phylogenetic position of a trebouxiophycean green alga (Chlorophyta) growing on the rubber tree, Hevea brasiliensis, with the description of a new genus and species. Eur J Phycol 43, 185–193.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.012963-0
Loading
/content/journal/ijsem/10.1099/ijs.0.012963-0
Loading

Data & Media loading...

Supplements

vol. , part 5, pp. 1224-1235

IMAGE

Predicted secondary structure of the ITS2 region of strain CAUP H 8001. The prediction was made with RNAstructure 4.5. Helices conserved in the general eukaryotic ITS2 structure are labelled with roman numerals. Note that the predicted structure lacks the conserved helix IV, and it is impossible to modify the prediction to introduce such a helix due to a deletion in the corresponding region (as in some other representatives of Scenedesmaceae;, data not shown). The stem resulting from pairing the 5′ end and the 3′ end of the sequence may be an artefact of the prediction (it is not assumed in the standard model of the eukaryotic ITS2 structure). Substitutions in strain E4-g are highlighted by grey squares. The residue secondarily deleted from all ITS2 sequences available for the genus is indicated by a grey circle.

IMAGE

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error