1887

Abstract

A moderately halophilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium, designated strain HRh1, was obtained from mixed sediment samples from hypersaline chloride–sulfate lakes in the Kulunda Steppe, in south-western Siberia (Russia), using aerobic enrichment culture at 1 M NaCl with thiocyanate as substrate. Cells of the isolate were short, non-motile rods with a Gram-negative type of cell wall. The bacterium was an obligate aerobe capable of chemolithoautotrophic growth with thiocyanate and thiosulfate. With thiosulfate, it grew at NaCl concentrations of 0.2–3.0 M (optimum 0.5 M) and at pH 6.3–8.0 (optimum pH 7.3–7.5). During growth on thiocyanate, cyanate was identified as an intermediate. The dominant cellular fatty acids were C and C 7. Phylogenetic analysis based on 16S rRNA gene sequencing placed the isolate in the class as an independent lineage, with an unclassified marine sulfur-oxidizing bacterium as the closest culturable relative (93 % sequence similarity). A single gene (coding for the key enzyme of the Calvin–Benson cycle of autotrophic CO assimilation) with relatively low similarity to any homologous genes found in chemolithoautotrophs was detected in strain HRh1. On the basis of our phenotypic and phylogenetic analysis, the halophilic isolate is proposed to represent a new genus and novel species, gen. nov., sp. nov. The type strain of is HRh1 (=DSM 21152 =UNIQEM U249).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.012880-0
2010-02-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/2/444.html?itemId=/content/journal/ijsem/10.1099/ijs.0.012880-0&mimeType=html&fmt=ahah

References

  1. Bezsudnova, E. Yu., Sorokin, D. Yu., Tichonova, T. V. & Popov, V. O. ( 2007; ). Thiocyanate hydrolase, the primary enzyme initiating thiocyanate degradation in the novel obligately chemolithoautotrophic halophilic sulfur-oxidizing bacterium Thiohalophilus thiocyanoxidans. Biochim Biophys Acta 1774, 1563–1570.[CrossRef]
    [Google Scholar]
  2. Hunter, E. M., Mills, H. J. & Kostka, J. E. ( 2006; ). Microbial community diversity associated with carbon and nitrogen cycling in permeable shelf sediments. Appl Environ Microbiol 72, 5689–5701.[CrossRef]
    [Google Scholar]
  3. Katayama, Y., Matsushita, Y., Kaneko, M., Kondo, M., Mizuno, T. & Nyunoya, H. ( 1998; ). Cloning of genes coding for the subunits of thiocyanate hydrolases of Thiobacillus thioparus THI 115 and their evolutionary relationships to nitrile hydratase. J Bacteriol 180, 2583–2589.
    [Google Scholar]
  4. Kelly, D. P. & Baker, S. C. ( 1990; ). The organosulfur cycle: aerobic and anaerobic processes leading to turnover of C1-sulfur compounds. FEMS Microbiol Rev 87, 241–246.[CrossRef]
    [Google Scholar]
  5. Kelly, D. P., Stackebrandt, E., Burghardt, J. & Wood, A. P. ( 1998; ). Confirmation that Thiobacillus halophilus and Thiobacillus hydrothermalis are distinct species within the γ-subclass of the Proteobacteria. Arch Microbiol 170, 138–140.[CrossRef]
    [Google Scholar]
  6. Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. ( 1951; ). Protein measurement with Folin phenol reagent. J Biol Chem 193, 265–275.
    [Google Scholar]
  7. Marmur, J. ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef]
    [Google Scholar]
  8. Marmur, J. & Doty, P. ( 1962; ). Determination of the base composition of deoxyribonucleic acid from microorganisms. J Mol Biol 5, 109–118.[CrossRef]
    [Google Scholar]
  9. Pfennig, N. & Lippert, K. D. ( 1966; ). Über das Vitamin B12-Bedürfnis phototropher Schwefelbacterien. Arch Mikrobiol 55, 245–256 (in German).[CrossRef]
    [Google Scholar]
  10. Schäfer, H. & Muyzer, G. ( 2001; ). Denaturing gradient gel electrophoresis in marine microbial ecology. Methods Microbiol 30, 425–468.
    [Google Scholar]
  11. Sorokin, D. Yu. ( 2008; ). Diversity of halophilic sulfur-oxidizing bacteria in hypersaline habitats. In Microbial Sulfur Metabolism, pp. 225–237. Proceedings of the International Symposium on Microbial Sulfur Metabolism, 29 June–2 July 2006. Edited by C. Dahl & C. G. Friedrich. Münster: Springer.
  12. Sorokin, D. Yu., Tourova, T. P., Lysenko, A. M. & Kuenen, J. G. ( 2001; ). Microbial thiocyanate utilization under highly alkaline conditions. Appl Environ Microbiol 67, 528–538.[CrossRef]
    [Google Scholar]
  13. Sorokin, D. Yu., Tourova, T. P., Lysenko, A. M. & Muyzer, G. ( 2006; ). Culturable diversity of halophilic sulfur-oxidizing bacteria in hypersaline habitats. Microbiology 152, 3013–3023.[CrossRef]
    [Google Scholar]
  14. Sorokin, D. Yu., Tourova, T. P., Bezsoudnova, E. Yu., Pol, A. & Muyzer, G. ( 2007a; ). Denitrification in a binary culture and thiocyanate metabolism in Thiohalophilus thiocyanatoxidans gen. nov. sp. nov. – a moderately halophilic chemolithoautotrophic sulfur-oxidizing gammaproteobacterium from hypersaline lakes. Arch Microbiol 187, 441–450.[CrossRef]
    [Google Scholar]
  15. Sorokin, D. Yu., Tourova, T. P., Bracker, G. & Muyzer, G. ( 2007b; ). Thiohalomonas denitrificans gen. nov. sp. nov. and Thiohalomonas nitratireducens sp. nov., novel obligately chemolithoautotrophic, moderately halophilic, thiodenitrifying gammaproteobacteria from hypersaline habitats. Int J Syst Evol Microbiol 57, 1582–1589.[CrossRef]
    [Google Scholar]
  16. Spiridonova, E. M., Berg, I. A., Kolganova, T. V., Ivanovskii, R. N., Kuznetsov, B. B. & Turova, T. P. ( 2004; ). An oligonucleotide primer system for amplification of the ribulose-1,5-bisphosphate carboxylase/oxygenase genes of bacteria of various taxonomic groups. Microbiology (English translation of Mikrobiologiia) 73, 377–387.
    [Google Scholar]
  17. Van de Peer, Y. & De Wachter, R. ( 1994; ). treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10, 569–570.
    [Google Scholar]
  18. Wood, A. P. & Kelly, D. P. ( 1991; ). Isolation and characterisation of Thiobacillus halophilus sp. nov., a sulphur-oxidizing autotrophic eubacterium from a Western Australian hypersaline lake. Arch Microbiol 156, 277–280.[CrossRef]
    [Google Scholar]
  19. Zhilina, T. N., Zavarzin, G. A., Rainey, F. A., Pikuta, E. N., Osipov, G. A. & Kostrikina, N. A. ( 1997; ). Desulfonatronovibrio hydrogenovorans gen. nov., sp. nov., an alkaliphilic, sulfate-reducing bacterium. Int J Syst Bacteriol 47, 144–149.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.012880-0
Loading
/content/journal/ijsem/10.1099/ijs.0.012880-0
Loading

Data & Media loading...

vol. , part 2, pp. 444 - 450

Fatty acid composition of the polar lipids in strain HRh1 in comparison with other halophilic gammaproteobacterial SOB lineages obtained from the same environment. [PDF](52 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error